
www.manaraa.com

University of Iowa University of Iowa 

Iowa Research Online Iowa Research Online 

Theses and Dissertations 

Fall 2014 

Self-collision avoidance through keyframe interpolation and Self-collision avoidance through keyframe interpolation and 

optimization-based posture prediction optimization-based posture prediction 

Richard Kennedy Degenhardt III 
University of Iowa 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Copyright 2014 Richard Kennedy Degenhardt 

This thesis is available at Iowa Research Online: https://ir.uiowa.edu/etd/1446 

Recommended Citation Recommended Citation 
Degenhardt, Richard Kennedy III. "Self-collision avoidance through keyframe interpolation and 
optimization-based posture prediction." MS (Master of Science) thesis, University of Iowa, 2014. 
https://doi.org/10.17077/etd.2cikmwoa 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F1446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.2cikmwoa
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1446&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F1446&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

 

1
 

SELF-COLLISION AVOIDANCE THROUGH KEYFRAME INTERPOLATION AND 

OPTIMIZATION-BASED POSTURE PREDICTION 

By 

 
Richard Kennedy Degenhardt III 

A thesis submitted in partial fulfillment 

of the requirements for the Master of 

Science degree in Electrical and Computer 

Engineering in the Graduate College of 

The University of Iowa 

December 2014 

Thesis Supervisor: Professor Karim Abdel-Malek 

 



www.manaraa.com

 

2
 

Copyright by 

RICHARD KENNEDY DEGENHARDT III 

2014 

All Rights Reserved 



www.manaraa.com

Graduate College 

The University of Iowa 

Iowa City, Iowa 

CERTIFICATE OF APPROVAL 

_______________________ 

MASTER’S THESIS 

_______________ 

This is to certify that the Master’s thesis of 

Richard Kennedy Degenhardt III 

has been approved by the Examining Committee for 

the thesis requirement for the Master of Science degree in 

Electrical and Computer Engineering at the December 2014 graduation. 

Thesis Committee:  ___________________________________ 
    Karim Abdel-Malek, Thesis Supervisor 

  ___________________________________ 
    Jasbir Arora 

  ___________________________________ 
    Guadalupe Canahuate 

 



www.manaraa.com

ii 

 

To my grandmother, Margaret Degenhardt, 

who encouraged her children to attend an institution of higher learning, 

thereby instilling a desire for knowledge within her family 

for generations to come 



www.manaraa.com

 iii 

3
 

ACKNOWLEDGMENTS 

 First, I would like to thank my advisor, Professor Karim Abdel-Malek, for 

providing me with great opportunities in such an interesting field.  I would like to thank 

Kimberly Farrell for her guidance and significant contributions to the implementation of 

this work.  Further thanks to my family, co-workers, and friends, for their support and 

encouragement.  A special thanks to Chloe Metzger, for her help with editing and 

invaluable moral support.  Lastly, I would like to thank the members of my thesis 

committee: Professor Karim Abdel-Malek, Professor Jasbir Arora, and Professor 

Guadalupe Canahuate, for their time and feedback. 



www.manaraa.com

 iv 

4
 

ABSTRACT 

Simulating realistic human behavior on a virtual avatar presents a difficult task.  

Because the simulated environment does not adhere to the same scientific principles that 

we do in the existent world, the avatar becomes capable of achieving infeasible postures.  

In an attempt to obtain realistic human simulation, real world constraints are imposed 

onto the non-sentient being.  One such constraint, and the topic of this thesis, is self-

collision avoidance.  For the purposes of this topic, a posture will be defined solely as a 

collection of angles formed by each joint on the avatar. The goal of self-collision 

avoidance is to eliminate the formation of any posture where multiple body parts are 

attempting to occupy the exact same space.  My work necessitates an extension of this 

definition to also include collision avoidance with objects attached to the body, such as a 

backpack or armor.  In order to prevent these collisions from occurring, I have 

implemented an effort-based approach for correcting afflicted postures.  This technique 

specifically pertains to postures that are sequenced together with the objective of 

animating the avatar.  As such, the animation’s coherence and defining characteristics 

must be preserved.  My approach to this problem is unique in that it strategically blends 

the concept of keyframe interpolation with an optimization-based strategy for posture 

prediction.  Although there has been considerable work done with methods for keyframe 

interpolation, there has been minimal progress towards integrating a realistic collision 

response strategy.  Additionally, I will test this optimization-based approach through the 

use of a complex kinematic human model and investigate the use of the results as input to 

an existing dynamic motion prediction system. 

 

 

  



www.manaraa.com

 v 

5
 

PUBLIC ABSTRACT 

 

The research presented in this thesis provides a strategy for implementing realistic 

self-collision avoidance on a virtual avatar.  The goal of this self-collision avoidance 

method is to prevent multiple parts of the body from occupying the exact same space.  

This method not only accounts for limbs of the body, but is also dynamic enough to 

account for clothing and equipment that is placed on the avatar.  This strategy can be of 

great use when animating any articulated figure in a virtual environment and is targeted 

specifically for the fields of animation and digital human modeling.   

 

 



www.manaraa.com

 

 vi 

TABLE OF CONTENTS 

 

LIST OF FIGURES ......................................................................................................... viii 

CHAPTER 1 INTRODUCTION .........................................................................................1 

1.1 Digital Human Modeling with Santos® ................................................1 

1.2 Motivation ..............................................................................................3 

1.3 Literature Review...................................................................................5 

1.3.1 Keyframe Interpolation ...........................................................5 
1.3.2 Inverse Kinematics..................................................................8 
1.3.3 Collision Detection .................................................................9 

1.4 Objectives ............................................................................................11 

1.4.1 Keyframe Interpolation .........................................................12 
1.4.2 Sphere-Based Collision Detection ........................................12 

1.4.3 Collision Response through Posture Prediction ....................13 

CHAPTER 2 BACKGROUND .........................................................................................14 

2.1 Kinematic Human Modeling in Santos® .............................................14 

2.1.1 The 55-DOF Santos® Model ................................................14 

2.1.2 Optimization-Based Posture Prediction ................................16 
2.1.3 Minimizing Effort .................................................................19 
2.1.4 Validation of the Santos® Model .........................................21 

2.2 Predictive Dynamics ............................................................................22 

CHAPTER 3 APPROACH ................................................................................................25 

3.1 Integration into Predictive Dynamics ..................................................25 
3.2 Keyframe Interpolation with Posture Prediction .................................27 

3.2.1 Recursive Bisection with Interpolation .................................28 
3.2.2 Using Evaluation Points to Prevent Over-Smoothing ..........31 

3.3 Collision Detection ..............................................................................32 

3.3.1 Body-based Sphere Groups ...................................................32 
3.3.2 Body-based Object Sphere Filling ........................................34 
3.3.3 Collision Detection Implementation .....................................37 

3.4 Self-Avoidance Constraints .................................................................38 

3.4.1 Plane Constraints ..................................................................38 
3.4.2 Task-based Constraints .........................................................41 
3.4.3 Constraint Implementation....................................................43 

CHAPTER 4 RESULTS ....................................................................................................44 



www.manaraa.com

 

 vii 

4.1 Upper Body Self-avoidance with a Simple Obstacle ...........................44 
4.2 Upper Body Self-Avoidance with Complex Obstacles .......................45 
4.3 Full Body Avoidance for Complex Motions .......................................47 
4.4 Implementation with Predictive Dynamics ..........................................49 

CHAPTER 5 CONCLUSIONS .........................................................................................51 

5.1 Future Work .........................................................................................53 

REFERENCES ..................................................................................................................55 

APPENDIX ........................................................................................................................58 

 



www.manaraa.com

 

 viii 

 LIST OF FIGURES 

Figure 1.1: The Santos® digital human modeling software environment. ..........................2 

Figure 1.2: Several of the tasks that are being displayed through the use of Santos®. .......3 

Figure 1.3: A case where the predicted motion contained self-collision. ............................4 

Figure 1.4: Producing collision free motion between two keyframes. ................................6 

Figure 1.5: New positions generated by the plane constraint. .............................................7 

Figure 1.6: The multi-level approach to sphere filling. .....................................................10 

Figure 2.1: The 55-DOF Santos kinematic model. ............................................................15 

Figure 2.2: The result of MOO-based posture prediction for the index finger acting 

as the end-effector and reaching a target point in space. .................................17 

Figure 2.3: Validation results for optimization-based posture prediction. ........................21 

Figure 2.4: A component view of the predictive dynamics problem. ................................23 

Figure 3.1: A component view of the dynamic motion prediction system. .......................27 

Figure 3.2: The recursive method used to fix self-collisions through posture 

prediction and interpolation .............................................................................29 

Figure 3.3: A two dimensional representation of the recursive bisection strategy. ...........30 

Figure 3.4: The self-avoidance body spheres of the avatar. ..............................................33 

Figure 3.5: A two dimensional view of sphere intersection test. .......................................34 

Figure 3.6: A torus-shaped object parented to the avatar. .................................................35 

Figure 3.7: The torus-shaped object that is filled based on a convex envelope. ................36 

Figure 3.8: The strategy for grouping self-collisions.........................................................37 

Figure 3.9: A two dimensional view of how posture prediction could potentially fix 

all frames of the motion without actually fixing the path of the motion. ........39 

Figure 3.10: The plane constraint distance minimization. .................................................40 

Figure 3.11: An example of posture prediction with a plane constraint on the elbow 

joint. .................................................................................................................40 

file:///C:/Users/Rich/Dropbox/Shared%20with%20Chloe/Thesis/Rich%20Thesis.docx%23_Toc403036876


www.manaraa.com

 

 ix 

Figure 3.12: A two dimensional representation showing the use of directional plane 

constraints with posture prediction for a simple collision group. ....................41 

Figure 3.13:The two-handed weapon constraint preventing loss of contact with the 

weapon. ............................................................................................................42 

Figure 3.14: The general strategy for updating plane and task-based constraints, 

running posture prediction, and replacing the frame values. ...........................43 

Figure 4.1: A standard walking animation where the top frames were played directly 

from the animation file, and the bottom frames were processed for self-

collision avoidance...........................................................................................44 

Figure 4.2: A vertical jump animation where the top frames were played directly 

from the animation file, and the bottom frames were processed for self-

collision avoidance...........................................................................................45 

Figure 4.3: The avatar adjusting posture to avoid collision during the take-off phase 

of the vertical jump animation. ........................................................................46 

Figure 4.4: Multiple views of the animation for walking with a weapon, 

demonstrating how self-avoidance pulls the weapon away from its 

desired position in the opposite hand. ..............................................................46 

Figure 4.5: The walking animation with the two-handed weapon constraint added, 

showing how the opposite hand is once again in the guiding position. ...........47 

Figure 4.6: Allowing posture prediction to minimize effort across all joints, showing 

how posture prediction fails at maintaining ground contact. ...........................48 

Figure 4.7: Freezing only the lower body joints and predicting posture. ..........................48 

Figure 4.8: The vertical jump task with predictive dynamics and using a reference 

motion processed for self-avoidance. ..............................................................50 

  



www.manaraa.com

 

 x 

LIST OF EQUATIONS 

 

Equation 2.1: Global position vector for an end-effector ..................................................18 

Equation 2.2: Transformation matrix that describes the position and orientation of 

the ith DOF frame in terms of the (i-1)th frame ................................................18 

Equation 2.3: The optimization problem for posture prediction ........................................18 

Equation 2.4: The constraints used within posture prediction ...........................................19 

Equation 2.5: A measure of effort to be minimized within with posture prediction .........20 

Equation 3.1: Evaluation for linear interpolation ..............................................................29 

Equation 3.2: Determining the orientation of a plane constraint .......................................39 

Equation 3.3: The distance from an end effector to a plane constraint, for use with 

minimization within posture prediction ...........................................................39 



www.manaraa.com

 

 

 

1 

CHAPTER 1  

INTRODUCTION 

1.1 Digital Human Modeling with Santos® 

Digital human modeling (DHM) is a broad term often used to describe the 

analysis of complex situations using the software representation of humans.  This term 

can be applied both in the context of DHM as a technology and as a fundamental research 

area (Zhang and Chaffin, 2005).  As a technology, DHM is a means to provide useful 

information or feedback through the use of a digital prototype.  As a research area, DHM 

predicts human behavior through the development of mathematical models that allow for 

computer graphic visualization.   

 

The primary benefit of DHM is its proactive approach to the human element of 

design.  For example, the implementation of DHM technology in the field of product 

design can allow for easier and earlier identification of ergonomics-related problems.  

Often, DHM technology can even eliminate the need for added design steps, like creating 

physical mock-ups or testing on real human subjects.  In this thesis, DHM is implemented 

through the virtual human Santos® with the goal of analyzing task-based human 

performance.  To help achieve this goal, the Santos® environment relies on a novel, 

optimization-based philosophy of human modeling (Abdel-Malek, Yang, Kim, Marler, 

Beck, Swan, Frey-Law, Mathai, Murphy, Rahmatallah, and Arora, 2007).  This approach 

empowers the digital human to perform, unaided, in a physics-based world.   



www.manaraa.com

 

 

 

2 

 

Santos® was developed to be a comprehensive human model capable of 

predicting dynamic human motion.  The digital models are based on human body scans 

of specifically targeted anthropometry and morphology and incorporate 109 degrees of 

freedom.  The mathematical model for the Santos® skeleton was developed based on the 

Denavit-Hartenberg method for kinematic and dynamic analysis.  The prediction is 

achieved using optimization formulations that are governed by human performance 

measures and constrained through restrictions imposed by the skeleton, the laws of 

physics, and the environment. 

 

 

Figure 1.1: The Santos® digital human modeling software environment. 



www.manaraa.com

 

 

 

3 

1.2 Motivation 

There is an ever-evolving demand across a variety of industries for the ability to 

evaluate the human aspects of design within a computer-simulated environment.  While 

Santos® offers a realistic human model with accurate posturing capabilities, it can also 

necessitate extensive motion capture data when trying to dynamically predict motion.  

This becomes especially important when trying to predict dynamic human motion for a 

single task with a variety of different equipment configurations.  Currently, the Santos® 

model is being used within a branch of the US Military to prototype equipment and 

analyze performance across a range of tasks.   

 

 

Figure 1.2: Several of the tasks that are being displayed through the use of Santos®. 

 

A simple example of task-based prediction would be a digital soldier that walks 

up a flight of stairs with a specific type of rifle, armor vest, or backpack.  The software 

enables the user to import digital equipment models, which can then be added to the 

virtual soldier.  Each task that can be analyzed within the software requires motion 

capture data as input to the motion prediction system.  The motion capture process does 



www.manaraa.com

 

 

 

4 

not take into account every possible gear configuration that a soldier can have.  Instead, it 

relies on the prediction system to provide the cause and effect of different configurations.  

While this method works for altering the motion to account for added forces on the body, 

it fails to consider how the added items can physically obstruct the motion.  If, for 

example, an ammo pouch were to be attached to one side of the torso, only the weight of 

the pouch would be accounted for when dynamically predicting motion, not the space it 

occupies.  If the avatar’s arm were to move through this occupied space in the motion 

capture animation, it would likely move through the same space in the resulting predicted 

motion, causing unrealistic self-collision. 

 

 

Figure 1.3: A case where the predicted motion contained self-collision. 

 

It is infeasible to supply a motion capture animation for each of the thousands of 

possible equipment configurations that the software can create, and doing so would 

greatly diminish the dynamic nature of the software.  After all, one of the advantages of 

digital human modeling is that it eliminates the need for the real human subjects that 



www.manaraa.com

 

 

 

5 

motion capture necessitates.  One possible solution is to require only one base animation 

for each task, and then modify it to account for any physical obstructions on the body.  If 

this were done in such a way that the realism of the motion could be maintained, the 

dynamic nature of the software would be preserved.  In order for this to be useful, the 

base animation for each task would need to be modified so that all collisions with 

equipment are avoided without compromising the objective of the motion.  Thus, if the 

avatar is holding a two-handed weapon in the original motion capture, its hands must also 

remain in contact with the weapon during all further posture adjustments.  To enforce 

objectives like this, task-specific constraints would be needed within the motion 

prediction to prevent any unwanted behaviors.  

1.3 Literature Review 

1.3.1 Keyframe Interpolation 

Keyframe interpolation has been used by animation studios since the 1930s.  

Animators define a motion as a disjointed set of poses and rely on interpolation to fill in 

the frames between each pose (Nebel, 1999).  In this case, a pose defined by the animator 

represents a keyframe.  This same method is also frequently applied to articulated figures 

in 3D animation.  The primary drawback to this approach is that it doesn’t ensure that the 

postures created between keyframes are realistic, meaning that the animator still has to go 

back and check each interpolated frame to correct any unrealistic postures.  Although 

other motion control methods exist within animation (Thalmann, 1991), keyframe 

interpolation still remains popular due to the simplicity of its requirements. 



www.manaraa.com

 

 

 

6 

 

To reduce the “check and correct” burden that keyframe interpolation places on 

the animator, several different posture-building tools have been created.  Kinematics and 

dynamic constraints are often used within virtual reality applications to create more 

realistic motion.  Although these same strategies can be successfully applied to the field 

of 3D animation, they do not account for collisions between the limbs of an articulated 

figure.  Nebel (1999) proposes an incomplete algorithm to automatically generate 

keyframes that the animator previously had to add manually.  This algorithm does not 

make any assumptions towards the makeup of the articulated figure, so only a rigid 

skeleton and an associated collision detection system is needed.  Figure 1.4 provides a 

better understanding of how this recursive method for collision avoidance works. 

 

 

K0, K1, keyframes specified at the time steps T0, T1 

 

CheckAndCorrect( (K0, T0), (K1, T1) ) 

 { 

  Interpolate between K0 and K1 

  Get for each time step between T0 and T1 the list of self-collisions 

  If (self-collision) 

   Select the first collision to be corrected (TCollision, ColType) 

   Move the limbs at TCollision in order to correct the collision 

   Create a sub-keyframe (KCollision, TCollision) 

   CheckAndCorrect( (K0, T0), (KCollision, TCollision) ) 

   CheckAndCorrect( (KCollision, TCollision), (K1, T1) ) 

 } 

 
Figure 1.4: Produces collision free motion between two keyframes (Nebel, 1999). 

 

This algorithm supplies a general strategy for the implementation of self-collision 

avoidance.  It is an empty scheme that allows for the use of any generic interpolation and 

collision detection methods.  The algorithm takes advantage of geometric properties to 

automatically fix some of the collision frames, and will continue until all frames have 



www.manaraa.com

 

 

 

7 

been freed of self-collision.  Along with implementing his own self-collision detection 

method, Nebel (1999) also asserts a plane constraint on the limbs of the articulated figure 

to ensure that the obstacle is passed.  This constraint keeps the new suggested positions of 

the limbs on the path of the interpolation curve to create a more fluid motion.  Figure 1.5 

shows how the positions of a limb can be constrained to a plane that is defined by the 

interpolation splines. 

 

 

Figure 1.5: New positions generated by the plane constraint (Nebel, 1999). 

 

 Other models have since been adapted to this method of keyframe interpolation 

(Abend, 1982; Flash and Hogan, 1985).  Nebel (2000) attempts to extrapolate models 

from neuroscience to obtain more realistic self-collision avoidance.  These models make 

an effort to explain how the central nervous system coordinates movements for multi-

joint limbs.  One model shows that hand speed profiles have peaks before and after 

passing an obstacle (Abend, 1982).  Another proposes a minimum jerk model that 

simulates point-to-point movements based on the minimization of the rate of change of 

hand acceleration (Flash and Hogan, 1985).  These models were used within the recursive 

“check and correct” algorithm and were validated for simple obstacle avoidance cases 



www.manaraa.com

 

 

 

8 

(Nebel, 2000).  When compared to motions performed by real humans reaching around a 

simple obstacle, the results were considered to match over 30% of the time. 

 

 Liu and Cohen (1995) also proposed a model of keyframe interpolation that 

attempts to maintain a physically plausible motion.  Their method, which they refer to as 

keyframe optimization, helps to fill the gap between simple keyframe systems and other 

optimization-based systems.  This approach considers all user specified keyframe 

positions to be final, and it aids the interpolation process through the use of higher level 

constraints.  These constraints primarily deal with velocity and specifically pertain to the 

limbs of the body and the center of gravity.  The final component is a simplified 

optimization process that is used to solve the keyframes.  This is particularly useful when 

a character needs to perform an athletic motion and inertial forces start playing a 

significant role.  Although the authors do not explicitly state the results of this process, 

they do assert that the method creates graceful and realistic animations.  It is also worth 

noting that this system does not incorporate contact or collision avoidance. 

1.3.2 Inverse Kinematics 

The use of inverse kinematics (IK) methods for simulating complex human 

interactions has become standard in virtual reality applications.  Collision avoidance 

within IK is often accomplished by integrating collision response vectors.  This approach 

tends to work on a frame-by-frame basis, though it will often fail to ensure a coherent 

motion (Nebel, 2000).  An alternative approach would be a complete search in 

configuration space for a path free of collisions.  This method would have an exponential 



www.manaraa.com

 

 

 

9 

cost search that would grow with the number of degrees of freedom and still require some 

form of naturalness be imposed on the motion (Zhao, Liu, and Badler, 2005). 

 

Zhao et al (2005) propose a method of sternum-rooted IK that uses a data-driven 

approach to path planning for upper torso avoidance.  Data-driven motion generation 

relies on a database of human postures, and results in motions that are often very natural.  

The issue with this approach, however, is that it heavily depends on the amount of data 

collected.  It should be noted that there are methods for improving the flexibility of the 

data set through motion interpolation (Rose, Bodenheimer, and Cohen, 1998).  Zhao et al 

(2005) use the data-driven approach combined with a strength model to reduce the search 

complexity for a path and impose naturalness onto the motion.  Even though this strategy 

works well for simple path planning where a natural connecting path exists, it still does 

not guarantee completeness and is not recommended for use with systems that require a 

more complex solution.   

1.3.3 Collision Detection 

The literature presented thus far has primarily focused on the problem of 

formulating a collision response.  However, a collision handling system must also solve 

the problem of collision detection.  Most collision detection algorithms rely on testing 

geometrical intersections to determine if a collision is present.  These geometries are 

often broken into hierarchical representations of a character in order to localize the areas 

where a collision occurs and to improve the efficiency of the algorithm (O’Sullivan, 

Radach, and Collins, 1999).   



www.manaraa.com

 

 

 

10 

 

One representation of such an algorithm is the use of sphere trees (Palmer and 

Grimsdale, 1995; Hubbard, 1995, 1996; Quinlan, 1994).  It is common practice within 

computer graphics to use spheres to approximate objects.  This is because spheres 

provide simple intersection tests and have the property of rotational invariance.  Using 

sphere hierarchies, any non-convex object can be filled with spheres to provide varying 

degrees of approximation.  O’Sullivan and Dingliana (1999) use four levels of sphere 

filling, each level providing a closer and more defined approximation of the object.  

These four levels can be collectively referred to as a sphere tree, which is generated 

automatically for an object.  The goal of this multi-level approach is to start with the 

least-defined approximation and then eliminate the need to search the subsets contained 

within the next levels.  

 

 

Figure 1.6: The multi-level approach to sphere filling (O’Sullivan and Dingliana, 1999). 

 

O’Sullivan and Dingliana (1999) generate the sphere representation of an object 

through recursive octree subdivision.  This process first requires the smallest possible 

bounding cube for the object to be obtained.  Once the object is completely encompassed 

by this bounding cube, the cube is then subdivided into eight equal partitions known as 

octants.  If a resulting partition contains any part of the object, it becomes a node of the 

octree and will also be subdivided.  This octant subdivision continues recursively until 



www.manaraa.com

 

 

 

11 

the desired level of approximation is reached.  Each cube node will then be replaced with 

a sphere that has its radius set to the smallest value capable of completely encompassing 

the cube. 

 

Once the sphere representation of an object has been obtained, it is ready to be 

used within the collision detection system.  This system enforces an all-pairs table that 

tracks the bounding box of every entity in the scene.  When two entities are found to be 

colliding based on the bounding boxes, they are added to the active collisions list.  All 

pairs in the active collisions list are then processed by an intersection-testing algorithm to 

determine whether or not they are actually colliding.  This intersection test simply checks 

to see if the distance between two spheres is less than the sum of the radii.  If two entities 

are found to be colliding, they are added to the real collision list and will be handled by a 

collision response strategy.  O’Sullivan and Dingliana (1999) use this collision detection 

method to provide varying degrees of collision response data that is cleverly prioritized 

by visual perception.  They note, however, that the model is very specific and doesn’t 

take advantage of several factors that are truly representative of human motion. 

1.4 Objectives 

The general objective of this thesis is to introduce a new technique for 

implementing self-collision avoidance within the dynamic motion prediction system of 

Santos®.  In order to do so, a method for keyframe interpolation is developed that can be 

adapted to take advantage of the pre-existing work done within the Santos environment.  

Because a validated, optimization-based method for posture prediction already exists 



www.manaraa.com

 

 

 

12 

within the software, this can be leveraged to impose naturalness onto the interpolated 

postures that are created.  This method for posture prediction also allows for the creation 

of constraints that will be used to keep the motion continuous.  More specifically, this 

approach will attempt to solve some of the issues encountered in the current literature 

through the use of the concepts outlined in the remainder of this section. 

1.4.1 Keyframe Interpolation 

A modified version of the generic keyframe interpolation strategy introduced by 

Nebel (1999) was developed to be used with a custom collision handling system.  

Correcting some of the animation frames through interpolation will limit the number of 

times the more expensive collision response method of posture prediction is needed.  This 

attempt to confine posture prediction to frames targeted by recursive bisection will also 

prove to help maintain a coherent motion.  Because large groups of collision frames 

could lead to loss of important motion characteristics, evaluation points are used to 

prevent the interpolation from over-smoothing the motion. 

1.4.2 Sphere-Based Collision Detection 

A collision detection method is implemented that uses sphere-based body 

groupings to distinguish between the torso and limbs of the avatar.  This method is low 

cost and allows for a dynamic modification of the groups to account for equipment added 

to the body.  The avatar will have a set amount of predetermined body spheres, while any 

added equipment will need to be filled with spheres before it can be grouped 



www.manaraa.com

 

 

 

13 

appropriately.  To automate this sphere-filling process, an equipment import tool has 

been developed that automatically attempts to fill a model using a best-fit strategy for a 

number of spheres provided by the user. 

1.4.3 Collision Response through Posture Prediction 

As previously discussed, the existing method for posture prediction is being 

leveraged to impose naturalness onto the interpolated postures.  This approach, like those 

that use kinematics equations in the literature (Zhao, Liu, and Badler, 2005), can be 

problematic when trying to produce a fluid motion.  To account for this issue, a plane 

constraint is imposed on the position of specifically targeted joints.  This constraint will 

always be in the direction of the most recently defined motion curve.  These plane 

constraints, combined with the smoothing effect of keyframe interpolation, mitigate the 

motion inconsistencies created by frame-by-frame posture prediction. 

  



www.manaraa.com

 

 

 

14 

CHAPTER 2  

BACKGROUND 

2.1 Kinematic Human Modeling in Santos® 

The Santos® software environment provides a physics-based model that can be 

used within a multi-objective, optimization-based problem to formulate predicted 

postures (Yang, Rahmatalla, Marler, Abdel-Malek, and Harrison, 2007).  That is to say, a 

high degree-of-freedom human model is used within the software to realistically 

approximate a full body skeletal posture that is governed by the same factors of physics 

that we encounter in the real world. 

2.1.1 The 55-DOF Santos® Model 

The Santos® model uses rigid links connected by kinematic joints to represent the 

human skeletal system (Yang et al, 2007).  It’s important to note the difference between a 

kinematic joint and an anatomical joint.  An anatomical joint, like those found on a real 

human, can have multiple kinematic joints.  For example, the wrist contains two 

kinematic joints because it is mechanically capable of rotating about two different axes.  

In order to accurately model the entire human body, a system with a large number of 

kinematic joints is necessary.  This is what is commonly referred to as a high degree-of-

freedom (DOF) model.  The Santos® software uses a 55-DOF kinematic model that can 

be seen in Figure 2.1. 



www.manaraa.com

 

 

 

15 

 

Figure 2.1: The 55-DOF Santos kinematic model. 

 

The Denavit-Hartenberg (DH) method is used with this model to represent the 

transformations between joints (Denavit and Hartenberg, 1955).  Because the human 

body is a structure that is arranged through a series of rigid links connected by joints, the 

DH method is necessary to address the motion of the system (Abdel-Malek and Arora, 

2013).  Additionally, this method has proven to be a useful tool for modeling human 

biomechanics, because it can efficiently represent the transformation through four 

parameters (Farrell, 2005).  Developing the Santos® model for the DH method required a 



www.manaraa.com

 

 

 

16 

local coordinate frame to be embedded at each DOF.  For each frame, the ith z-axis 

controls the motion for the (i + 1)th DOF.  Farrell (2005) describes the four parameters of 

the method that are used to obtain the position and orientation of frame i with respect to 

frame i – 1 as follows: 

 the angle θi between the (i-1)th and ith x-axis about the (i-1)th z-axis 

 the distance di from the (i-1)th to the ith x-axis along the (i-1)th z-axis 

 the angle αi between the (i-1)th and ith z-axis about the ith x-axis 

 the distance ai from the (i-1)th to the ith x-axis along the ith x-axis 

Referring to Figure 2.1, the coordinate frames required for supplying the 

parameters of the DH method can be seen with each DOF.  It is this use of the DH 

method with a high-DOF human model that allows for the prediction of human posture 

within the software. 

2.1.2 Optimization-Based Posture Prediction 

Posture prediction attempts to find a configuration of joint angles that allows the 

human body to achieve a specific objective.  A common example of this is reaching a 

fingertip towards a target point in space.  A high-DOF model of a human will likely yield 

multiple solutions to this problem.  An optimization-based approach to posture prediction 

will look for the most realistic posture that satisfies the objective.  Santos® uses a multi-

objective optimization, which combines multiple human performance measures as 

multiple objectives in the optimization problem.  These performance measures can 

include minimization of factors like perturbation from a neutral posture, joint 

displacement, and potential energy.  Depending on the objective, there may be a 



www.manaraa.com

 

 

 

17 

preference for one factor over another.  Figure 2.2 shows how the Santos® software can 

combine a variety of performance measures and assign weighting values for each. 

 

 

Figure 2.2: The result of MOO-based posture prediction for the index finger acting as the end-
effector and reaching a target point in space. 

 

The possible performance measures are not limited to those shown in Figure 2.2, 

as many others can be developed.  Optimization-based posture prediction merely 

introduces a framework for the optimization of these cost functions on the task being 

completed.  A cost function, for the purpose of this formulation, is any human 

performance measure that is to be minimized or maximized (Abdel-Malek and Arora, 

2013).  In order to properly set up the optimization problem, constraints and design 

variables will also be needed.  The design variables are the position and orientation of the 

segmented body links, while the constraints are any mathematical bounds to the problem.  

For example, a constraint can impose a distance tolerance between a target point and an 



www.manaraa.com

 

 

 

18 

end-effector.  An end-effector is the part of the body that will attempt to reach the target 

point.  In Figure 2.2, the end-effector is the tip of the index finger, and the global position 

of this end-effector is obtained through Equation (2.1), expressed in terms of the 

transformations given by Equation (2.2). 

 

  1

1

n
i

i n

i





 
  
 
x q T x          (Equation 2.1) 

 

1

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i i

i i i i i i ii

i

i i i

a

a

d

     

     

 



 
 

 
 
 
 

T
         (Equation 2.2) 

 

 

 Within Equation (2.1), x(q) represents the global position vector and xn is the 

position of the end-effector with respect to the nth frame.  The transformation matrix 

describes the position and orientation of the ith frame in terms of the (i-1)th frame.  These 

frames are embedded locally at each DOF, and the terms of this transformation matrix are 

the DH parameters discussed previously.   

 

 The optimization problem is then set up to find the generalized joint variables that 

represent the optimum posture for a task.  It attempts to satisfy the cost functions while 

also operating within a feasible space that is governed by the constraints.  Abdel-Malek 

and Arora (2013) present the optimization problem using the following equations: 

 

𝐹𝑖𝑛𝑑: 𝒒 ∈ 𝑅𝐷𝑂𝐹    𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: Discomfort, Effort, etc.         (Equation 2.3) 

 



www.manaraa.com

 

 

 

19 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ‖𝑥(𝒒)𝑒𝑛𝑑−𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡𝑝𝑜𝑖𝑛𝑡‖
2

≤ 𝜀           (Equation 2.4) 

𝑎𝑛𝑑   𝑞𝑖
𝐿 ≤ 𝑞𝑖 ≤ 𝑞𝑖

𝑈;         𝑖 = 1, 2, … , 𝐷𝑂𝐹  

  

Within Equation (2.3), q represents the vector of generalized joint variables that 

will be calculated.  The first part of Equation (2.4) describes the distance constraint that 

will be used to require contact between the end-effector and target point.  This constraint 

represents distance squared, and 𝜀 is a positive number that is used to approximate zero.  

The second part of the equation is used to impose limits on the joints so that the resulting 

posture remains realistic while trying to reach the target point.  For the purposes of this 

thesis, only a basic understanding of optimization-based posture prediction is necessary.  

The real significance, with regards to self-collision avoidance, is that it supplies a 

validated method for imposing realism onto a collision response. 

2.1.3 Minimizing Effort 

Although there are several performance measures available within optimization-

based posture prediction, this implementation will primarily focus on minimizing effort.  

Effort will be defined as total displacement of all joints from the initial posture.  This 

differs from the discomfort measure, which is a measure of total displacement from a 

posture that is deemed comfortable.  For the purposes of this thesis, effort will likely be a 

more useful and reliable measure than discomfort, especially with a motion like jumping 

vertically where certain frames will not have an easily defined comfortable posture. 

 



www.manaraa.com

 

 

 

20 

Equation (2.5) (Abdel-Malek and Arora, 2013) provides a measure of effort that 

can be minimized within posture prediction.  Here, 𝑞𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 represents the initial set of 

joint variables for the avatar prior to posture prediction.  The effort is determined by the 

summation of the distances from the initial set, where each joint is assigned a weighting 

value (𝛾𝑖).  The weighting values are an important component for adding realism to the 

prediction, as they provide a priority for joint articulation.  The assigning of higher values 

will result in more contribution to the sum and have a stronger effect on the prediction.  

Put simply, this will keep joints of higher weight values closer to the initial posture, with 

the weight values for the joints having already been previously determined (Farrell and 

Marler, 2004).   

   

𝑓𝑒𝑓𝑓𝑜𝑟𝑡(𝑞) = ∑ 𝛾𝑖(𝑞𝑖 − 𝑞𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

2𝑛
𝑖=1         (Equation 2.5) 

 

  Because this strategy is trying to enforce the initial posture, it is beneficial to 

have a reasonable and realistic initial set of joint variables.  If, for example, the initial 

posture was obtained through motion capture, this method would be working towards a 

more realistic set of joint variables.  When used on a frame-by-frame basis, as 

demonstrated in this thesis, it will also help posture prediction follow the objectives of a 

motion.  

  



www.manaraa.com

 

 

 

21 

2.1.4 Validation of the Santos® Model 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Some of the validation results for optimization-based posture prediction. The 
images on the left side are the motion capture results while the images on the right side are 

the results of posture prediction (Farrell, 2005). 



www.manaraa.com

 

 

 

22 

In order to validate the results of optimization-based posture prediction with a 

high-DOF kinematic model, a motion capture tracking system was used with real human 

subjects (Farrell, 2005).  The motions of these subjects were mapped to a skeletal model 

and recorded to a results file.  After post-processing the files to account for subject 

anthropometry, they can be used to directly compare motion on a high-DOF skeletal 

model.  The results of this validation (Figure 2.3) showed that optimization-based posture 

prediction is capable of providing realistic postures.  Although the solution provided by 

posture prediction depends on the performance measures chosen in the optimization, the 

validation showed that this approach allows those measures to be easily adjusted and 

adopted to models with multiple end-effectors. 

2.2 Predictive Dynamics 

Predictive dynamics is the approach used within Santos® to simulate human 

motion.  Although the self-collision avoidance strategy described within this thesis does 

not make use of predictive dynamics, it will provide a form of input to the system.  For 

this reason, it is useful to have a basic understanding of the predictive dynamics 

methodology.  

 

 Considerations like human dynamics and the laws of physics are used within 

predictive dynamics to provide realistic human motion (Abdel-Malek and Arora, 2013).  

Similar to optimization-based posture prediction, the predictive dynamics approach relies 

on the same basic components in order to set up the optimization formulation.  The 

primary difference with dynamics is that it defines the performance measures and 



www.manaraa.com

 

 

 

23 

constraints with the goal of recovering the real motion of a dynamic system (Xiang, 

Chung, Kim, Bhatt, Rahmatalla, Marler, Arora, and Abdel-Malek, 2010).  Nevertheless, 

the problem still consists of the same core components: design variables, cost functions, 

and constraints. 

 

 

 

Figure 2.4: A component view of the predictive dynamics problem (Abdel-Malek and Arora, 
2013). 

 

The cost functions used within predictive dynamics are similar to those used with 

optimization-based posture prediction.  The goal of these functions is to drive the motion 

prediction based on minimizing factors, like energy and effort.  This minimization must 

still adhere to all constraints specified for the particular motion.  The distinguishing 

constraint of predictive dynamics is that it incorporates the general equations of motion.  

These equations describe the dynamics of our world, and attempt to solve for an 

unknown motion and the forces behind it.  As shown in Figure 2.4, the goal is to 

determine the joint profiles.  These joint profiles represent the angles created by the body 

segments as a function of time (Abdel-Malek and Arora, 2013). 



www.manaraa.com

 

 

 

24 

 

One of the posture prediction performance measures, which was previously 

mentioned, related to the minimization of deviation from an initial reference posture 

(Zhang and Chaffin, 2005).  A similar approach can be taken with predictive dynamics, 

but with a reference motion instead of a reference posture.  Because the reference motion 

can be obtained through motion capture with real human subjects, it serves as a valuable 

performance measure for providing a realistic solution.  It is important to note that this is 

a cost function and must satisfy the constraints imposed by the joint limits and the 

equations of motion.   

 

Although predictive dynamics is capable of incorporating a method for self-

avoidance, the current implementation offers no way to avoid obstacles that are attached 

to the body.  From a software standpoint, the ability to attach objects to the body and use 

dynamics to predict the motion with these new forces taken into consideration is useful.  

While the system is very capable of supplying realistic results with regards to the effect 

of the new forces, it does not account for the space occupied by the objects.  By using a 

reference motion as a cost function, the issue is further compounded by minimizing the 

deviation from a motion where the added obstacles do not exist.  One possible solution to 

this problem, which is the topic of this thesis, is to modify the reference motion to 

account for the obstacles that have been added to the body.  The resulting motion should 

provide a more useful minimization to be used as a cost function.  However, there are still 

a few potential pitfalls with this strategy, which will be discussed further in the next 

chapter.   



www.manaraa.com

 

 

 

25 

CHAPTER 3  

APPROACH 

3.1 Integration into Predictive Dynamics 

The goal of this work is to provide the predictive dynamics system with a motion 

that is free of self-collision.  As discussed in the previous chapter, this motion will be 

used as part of a cost function within the system.  Unfortunately, this process is not as 

straightforward as just fixing the self-collisions in a motion capture file and then passing 

it to the predictive dynamics system.  Because the system will modify the motion to 

account for the forces on the body, it is entirely possible that the fixed motion will be 

brought back into collision.   

 

If, for example, a situation calls for the use of predictive dynamics for simulating 

a task where a human model is walking forward with a backpack and an armor vest.  

Although a motion capture file of a test subject walking forward is available for use as 

the reference motion, the action was performed by a subject that was not wearing a 

backpack or an armor vest.  Because the reference motion is part of only one of 

potentially many cost functions within the system, and the forces of the objects will still 

be applied through dynamics, the motion remains acceptable to use.  The problem, 

however, is that the vest in the simulation has pockets protruding from the sides and they 

collide with the model’s arms while walking.  To fix this issue, the reference motion 

capture file will be run through the self-avoidance system to transform it into a motion 

that is free of these collisions, allowing the model’s arms to cleanly navigate around the 



www.manaraa.com

 

 

 

26 

protrusions of the vest.  This new, and hopefully improved, reference motion can now be 

used within predictive dynamics.  If, however, the force on the body created by the 

backpack is great enough to cause significant deviation from the reference motion, it is 

likely that the arms will again be moved into collision with the vest protrusions.  

 

There is a simple, yet costly, solution to this problem.  First, predictive dynamics 

will need to be used with the unmodified reference motion in order to obtain a result 

where the forces have already been applied.  This resulting motion will then be run 

through the self-avoidance system to fix any collisions.  Because the method may have 

altered the motion in such a way that violates the predictive dynamics constraints, it 

would need to be fed back into predictive dynamics again and used to obtain the final 

solution.  Running the entire predictive dynamics system twice is often too costly in 

terms of performance for practical uses, especially for the purposes of self-collision 

avoidance.  

 

Fortunately, this implementation can make use of an existing neural network that 

is built around a vast library of predictive dynamics results (Bataineh, 2012).  This neural 

network was created with the goal of improving the performance of predictive dynamics 

by providing a better initial guess to the system.  It can also improve self-avoidance by 

providing an initial guess motion that accounts for added forces to the body, and thereby 

necessitates only running predictive dynamics once.  Although this method still leaves 

room for error, the performance of the motion prediction system as a whole is greatly 

increased.  To recap, the self-collision avoidance system takes the output of the neural 



www.manaraa.com

 

 

 

27 

network, removes all self-collisions from the motion, and passes it onto the system to be 

used for motion prediction. 

 

Figure 3.1: A component view of the dynamic motion prediction system. 

 

3.2 Keyframe Interpolation with Posture Prediction 

The previous section focused on how the self-collision avoidance system is used 

to aid the motion prediction of predictive dynamics.  This section, and those that follow, 

will deal only with what happens within the self-collision avoidance system.  The basics 

of the algorithm will be discussed along with a detailed breakdown of the collision 

avoidance strategy and the constraints created for posture prediction. 



www.manaraa.com

 

 

 

28 

3.2.1 Recursive Bisection with Interpolation 

The idea of keyframe interpolation through recursive bisection was presented by 

Nebel (1999).  As shown in the literature review, the general structure already exists for a 

recursive algorithm that implements this form of self-avoidance.  Using this underlying 

idea, a method for keyframe interpolation was developed that works around joint angle 

sets obtained from optimization-based posture prediction.  In order to manipulate the 

animation, the input file is converted into a series of joint rotation curves.  Each degree-

of-freedom present on the avatar contains its own rotation curve for the animation, and 

each curve contains a key for every frame—which is represented by a single posture—in 

the animation. 

 

Figure 3.2 provides a basic outline of the algorithm used to generate self-collision 

free motions.  This method takes the bounds of an animation segment as input, and finds 

all collision groups within this segment.  A collision group occurs when multiple 

consecutive frames are found to contain self-collisions.  Once all of the collision groups 

are obtained, the recursive loop begins.  For each collision group, the centermost frame is 

found and run through a modified version of optimization-based posture prediction that 

will account for self-avoidance.  The keys for all surrounding frames within the joint 

rotation curves are then removed and replaced by interpolated values.  Because the 

animations maintain a high frame rate, these curve keys can be accurately evaluated 

through linear interpolation (Equation 3.1).  The only frame known to be free of collision 

at this point is the bisecting frame, though it is likely that several other surrounding 



www.manaraa.com

 

 

 

29 

frames have also been fixed as a result of the interpolation.  This entire process continues 

until the motion has been modified such that no self-collisions remain.  

 

For a value x in the interval (x0, x1), the value y along the straight line is given from: 

𝑦− 𝑦0

𝑥−𝑥0
=

𝑦1−𝑦0

𝑥1−𝑥0
         (Equation 3.1)  

 

 

Figure 3.2: The recursive method used to fix self-collisions through posture prediction and 
interpolation. 

 

Because it is often difficult to visualize the motion in terms of joint rotation 

curves, it may be helpful to think of it in terms of a two dimensional path of motion.  This 



www.manaraa.com

 

 

 

30 

path will be for a joint on the body that will travel through an area of collision.  The steps 

of the algorithm can now easily be broken down and displayed visually.  Figure 3.3 

shows the steps using this visual format for a simplified case. 

 

 

Figure 3.3: The blue circles represent collision spheres, and the yellow dots represent a joint 
position within a frame of the animation, where a) the path of motion creates a group of 

collisions, b) the middle frame is fixed through the implementation of posture prediction, c) the 
surrounding frames are removed and replaced by interpolated values, and d) the process 

recursively repeats for remaining collisions. 



www.manaraa.com

 

 

 

31 

3.2.2 Using Evaluation Points to Prevent Over-Smoothing 

Over-smoothing of an animation occurs when a large group of frames are 

interpolated such that characteristics of the original motion are lost.  This has the 

potential to happen any time a large group of collisions is found, and is a result of all 

frames around the initial bisection having been replaced by interpolated values.  While it 

is preferable to replace these frames with postures that are free of collision, this cannot be 

done if replacement comes at the cost of important characteristics of the motion.  

Fortunately, for the purposes of this thesis, each predictive dynamics task developer 

specifies evaluation points within the animation.  They choose these points in time based 

around criteria they deem important to the representation of the motion.  This is similar to 

how a 3D animator would choose frames for keyframe interpolation. 

 

These evaluation points are very useful for identifying a relatively small selection 

of frames where the values in between can be interpolated without losing important 

motion characteristics.  In other words, the likelihood of the motion being over-smoothed 

by interpolation can be mitigated by using this selection of frames.  This is done by 

implementing a quick pre-processing phase prior to the recursive bisection.  Within this 

phase, both the group of developer-chosen frames and the first and last frame of the 

animation are run through self-collision detection.  If a self-collision is detected for any 

frame, it will be fixed using the modified optimization-based posture prediction method.  

This will ensure that the collision groups within the animation never get large enough to 

allow interpolation to over-smooth desirable characteristics. 

 



www.manaraa.com

 

 

 

32 

3.3 Collision Detection 

The collision response method chosen for this self-avoidance approach is best 

suited for a simple and low cost strategy for collision detection.  Because the collision 

response does not require information about the current collisions, it is only necessary to 

know if they exist within the frame.  As the literature mentioned, sphere-based 

intersection tests provide a low cost option for collision detection.  The method 

implemented here will use body-based sphere groups and dynamically add object spheres 

to the group of the parented limb. 

3.3.1 Body-Based Sphere Groups 

A list of self-avoidance spheres and a grouping logic for those spheres exist 

within the data file for each avatar.  The five basic body groups that will be considered 

include the torso and head, the left arm, the right arm, the left leg, and the right leg.  Each 

sphere is parented to a joint and assigned a radius and offset position.  In total, the avatar 

contains 39 body spheres split among the five groups.  The file also contains logic for 

several spheres pairs that are not enforced between the groups, most notably the overlap 

where the legs and arms meet the torso. 



www.manaraa.com

 

 

 

33 

 

Figure 3.4: The self-avoidance body spheres of the avatar. 

 

Once all of the spheres have been defined for the body, the self-collision detection 

test becomes fairly simple.  First, a list of enforced sphere pairs is built between the five 

groups.  This is done by adding every possible pair that could qualify as a collision 

between any two groups.  Say, for example, the objective is to know when the sphere 

located in the wrist collides with a sphere located in the other four body groups.  This 

means that the list contains a pair for every possible pairing of the wrist sphere with each 

other sphere in the other four body groups.  The collision detection then becomes a 



www.manaraa.com

 

 

 

34 

simple intersection test between every sphere pair within this list.  Because the radius and 

position of every sphere is known, the intersection test consists of comparing the sum of 

the radii of the two spheres with the distance between the centers.  Essentially, if the sum 

of the radii is greater than the distance between the center points, it is safe to determine 

that the two spheres are not intersecting.  Although there is a considerably large number 

of sphere pairs in the list, the simple intersection test ensures that performance remains 

acceptable. 

 

 

Figure 3.5: Two dimensional view of sphere intersection test. 

 

3.3.2 Body-based Object Sphere Filling 

Not only is it useful to avoid self-collision between body parts, but it is also useful 

to avoid collision with objects that are attached to the body.  For this reason, a method 

has been developed for filling objects with spheres and adding those spheres to the 

appropriate body group.  If, for example, a pouch is added to the torso of the avatar, the 

pouch will be filled with spheres that will then be added to the torso’s body sphere group.  

From that point on, any time a sphere located within the arm collides with a sphere of the 



www.manaraa.com

 

 

 

35 

pouch, it will be detected as a collision that should be handled by the collision response 

strategy. 

 

A method for sphere-filling of objects has been developed in order to further 

support a continuous avoidance strategy.  The actual sphere-filling method is not unique, 

but where standard approaches fill every mesh of the model individually, this method 

wraps all of the meshes in a cocoon-like casing which will then be filled with spheres.  

This takes a potentially complex shape and greatly simplifies it.  One issue this form of 

sphere-filling can prevent deals with non-continuous motions created by avoidance of 

annulated objects.  

 

 

Figure 3.6: A torus-shaped object parented to the avatar. 

 

Figure 3.6 shows the type of object that could create this issue.  It occurs because 

the optimization-based posture prediction can provide a solution that positions a limb 



www.manaraa.com

 

 

 

36 

inside the torus-shaped object.  If a motion involved swaying the arms forward and 

backward, posture prediction would likely alternate between predicting collision-free 

frames outside of the torus object with predicting collision-free frames inside of the 

object.  This would either lead to an unrealistic snapping motion through the torus object, 

or a very inconvenient and inefficient swaying of the arm.  Because the optimization-

based posture prediction does not factor in the equations of motion, the problem would 

need to be simplified in order to maintain realism.  By filling objects with spheres based 

on a convex envelope, the gaps of the object are filled, and a simpler shape for avoidance 

is created.  By applying this method to the torus-shaped object of the previous figure, the 

hole becomes filled with spheres and the avatar navigates the arm around the entire object 

during motion.  It is worth noting that these special error cases are difficult to create, so 

filling objects in the conventional manor would not be considered detrimental to the 

system. 

 

 

Figure 3.7: The torus-shaped object that is filled based on a convex envelope. 



www.manaraa.com

 

 

 

37 

3.3.3 Collision Detection Implementation 

The implementation of collision detection within the self-avoidance algorithm is 

used to find the collision groups present in an animation segment.  The method only 

needs to know whether or not a single collision is present for a particular frame.  The 

following figure shows the logic for building the collision groups that will are used with 

the recursive bisection method. 

 

 

Figure 3.8: The strategy for grouping self-collisions. 

 



www.manaraa.com

 

 

 

38 

3.4 Self-Avoidance Constraints 

In order to maintain a realistic motion and adhere to certain task-based objectives, 

it is necessary to implement custom constraints for the optimization-based posture 

prediction.  The first of which is a plane constraint for positioning joints, which will help 

the posture prediction maintain a fluid path of motion for the limbs.  For specific tasks, 

other constraints will also need to be added if this method for self-avoidance is to be used 

practically.  One such task-based objective that has been implemented is a constraint for 

holding a two-handed weapon while walking. 

3.4.1 Plane Constraints 

The need for plane constraints becomes apparent as soon as posture prediction is 

freely run on a frame-by-frame basis.  Plane constraints are used to drive the predictions 

along the path of motion, and without this driving force, the motion can easily become 

disjointed.  This occurs because the optimization problem within posture prediction 

knows nothing about the frames before or after the current frame, and there is nothing 

that enforces coherence between frame predictions.  Without a plane constraint, the 

posture will be solved based only on minimization of effort, which will likely create large 

gaps between frames.  Figure 3.9 gives a two-dimensional representation of the problem 

through the same simplified visualization method used previously. 

 



www.manaraa.com

 

 

 

39 

 

Figure 3.9: How posture prediction could potentially fix all frames of the motion without actually 
fixing the path of the motion. 

 

Although interpolation will likely mitigate this effect by evenly evaluating some 

of the collisions frames, a method for enforcing the path of motion is needed.  A joint-

based plane constraint has been implemented by placing an unbounded plane in the 

position of a selected joint and setting the orientation of the plane to be the direction of 

motion (Equation 3.2).  Next, posture prediction is run with the position of the selected 

joint constrained to somewhere along the plane.  The joint will be the end-effector in this 

instance, and the distance between it and the plane will be minimized through Equation 

(3.3), as demonstrated by the accompanying figure (Farrell, 2005).  To allow for a 

simpler optimization, a dot product representation of cos2 𝜃 is used. 

 

𝑛𝑖 = |𝑥𝑖(𝑞) − 𝑥𝑖+1(𝑞)|         (Equation 3.2) 

Where, xi(q) is the joint position at the ith frame 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 = |𝑥𝑘(𝑞) − 𝑝𝑘|2 cos2 𝜃 ≤ 𝜀      (Equation 3.3) 

= |𝑥𝑘(𝑞) − 𝑝𝑘|2 (
𝑛𝑘 ∙ (𝑥𝑘(𝑞) − 𝑝𝑘)

|𝑛𝑘||𝑥𝑘(𝑞) − 𝑝𝑘|
)

2

≤ 𝜀 



www.manaraa.com

 

 

 

40 

 

Figure 3.10: The plane constraint distance is minimization (Farrell, 2005). 

 

A common example of this implementation is adding a plane constraint to the 

elbow joint in order to avoid torso protrusions while walking.  Figure 3.11 shows the 

effect of running optimization-based posture prediction with the plane constraint parented 

to the elbow joint. 

 

 

Figure 3.11: The posture on the left was obtained through standard posture prediction, whereas 
the posture on the right used the plane constraint with posture prediction. 



www.manaraa.com

 

 

 

41 

 Within this implementation of self-avoidance, the use of the plane constraint is 

targeted at bisecting frames of collision groups.  The goal is to maximize the chance of 

surrounding collision frames being fixed through interpolation, and also to enforce 

navigation around objects.  Through recursive bisection, newly interpolated joint rotation 

curves are constantly being created.  These new curves provide safer joint positions for 

posture prediction and an updated direction of motion used for orienting the plane 

constraint.  This strategy will keep posture prediction from suggesting rogue postures that 

are not consistent with the path of motion for a joint. 

 

 

Figure 3.12: The red lines represent the use of directional plane constraints with posture 
prediction for a simple collision group. 

 

3.4.2 Task-Based Constraints 

A task-based constraint is one that is specifically implemented to ensure that 

posture prediction does not unknowingly guide the motion in a way that violates an 

objective of the animation.  Several of the tasks that are the focus of this work require the 

avatar to hold a two-handed weapon.  This weapon will generally be parented to only one 

hand in the scene, so it is entirely possible for self-avoidance adjustments to cause an 



www.manaraa.com

 

 

 

42 

undesirable loss of contact with the opposite hand.  To prevent this, a constraint can be 

added to posture prediction that mandates this contact.  Self-avoidance and realistic 

weapon contact can be simultaneously maintained through the strategic placement of an 

end-effector and target point in the scene, and by capturing the opposite hand direction 

with respect to the weapon. 

 

 

Figure 3.13: How the two-handed weapon constraint prevents loss of contact with the weapon. 

 

 In order to implement this constraint, a target point is parented to the trigger 

finger of the avatar.  This target point is then offset from the parented finger and 

positioned at the opposite hand point of contact.  An end-effector is also placed at this 

point of contact and parented to the opposite hand.  The optimization-based posture 

prediction will attempt to minimize the distance between the target point and end-effector 

to prevent the loss of weapon contact.  Task-based constraints are fairly simple for the 

developer to create, and once the constraint has been added to the system, it can easily be 

used with any future animation that warrants it. 



www.manaraa.com

 

 

 

43 

3.4.3 Constraint Implementation 

In order to manage the constraints used with the optimization-based posture 

prediction, there is a structure that allows for dynamically adding and updating them 

based on the task.  This means it becomes possible to pick and choose which constraints 

are needed for specific tasks and call a generic update method for those within the 

recursive bisection.  These updates are done right before posture prediction provides the 

new set of joint angles, as shown in the following figure. 

 

 

Figure 3.14: The general strategy for updating plane and task-based constraints, running posture 
prediction, and replacing the frame values. 

  



www.manaraa.com

 

 

 

44 

CHAPTER 4  

RESULTS 

4.1 Upper Body Self-Avoidance with a Simple Obstacle 

One of the primary motivating factors for the work of this thesis is to allow for 

upper body self-collision avoidance.  This is especially useful in animations that contain 

significant amounts of arm movement.  For the initial tests, a walking forward animation 

and a vertical jump animation were used.  Each of these animations contain arm 

movement that would interfere with objects attached to the side of the torso.  Figures 4.1 

and 4.2 show the effectiveness of the algorithm with avoiding a sphere model that has 

been attached to the torso.  The plane constraints were focused on the elbows, and the 

optimization-based posture prediction focused on minimizing effort. 

 

 

Figure 4.1: A standard walking animation where the top frames were played directly from the 
animation file, and the bottom frames were processed for self-collision avoidance. 

 



www.manaraa.com

 

 

 

45 

 

Figure 4.2: A vertical jump animation where the top frames were played directly from the 
animation file, and the bottom frames were processed for self-collision avoidance. 

 

4.2 Upper Body Self-Avoidance with Complex Obstacles 

 Although it is difficult to gauge the fluidity of a motion through a picture, the 

results show a smooth avoidance of the obstacle in both cases.  Despite this result 

showing promise, the obstacle used for these tests is greatly simplified and not an 

accurate representation of equipment that would need to be avoided in practical use.  For 

the next test, the aforementioned equipment sphere filling method is used to create more 

realistic jumping and walking scenarios.  The jumping motion avoids collision on both 

sides of the body with no noticeable breaks in coherence.  The walking motion also 

avoids collision successfully, but exposes the need for a two-handed weapon constraint.  

Figure 4.4 shows how adjusting for self-collision avoidance can potentially hinder 

objectives of the task, and Figure 4.5 shows how the two-handed weapon constraint can 



www.manaraa.com

 

 

 

46 

prevent this.  Again, the plane constraints were focused on the elbows, and posture 

prediction was focused on minimizing effort. 

 

 

Figure 4.3: The avatar adjusting posture to avoid collision during the take-off phase of the vertical 
jump animation. 

 

 

Figure 4.4: Multiple views of the animation for walking with a weapon. The two views on the left 
show the animation with no self-avoidance, and the views on the right demonstrate how self-

avoidance pulls the weapon away from its desired position in the opposite hand. 



www.manaraa.com

 

 

 

47 

 

Figure 4.5: The walking animation with the two-handed weapon constraint added, the opposite 
hand is once again kept in the guiding position. 

4.3 Full Body Avoidance for Complex Motions 

The results obtained to this point have only pertained to upper body avoidance 

between the arms and the torso, but the legs should also be considered.  Self-collisions 

involving the legs are far less common, but also far more difficult to handle.  This is 

because the arms rarely form points of contact with the ground or need to support the 

weight of the avatar.  Currently, there exists no performance measure implemented within 

the optimization-based posture prediction that will account for the balance of the avatar 

or the limited range of motion created by ground contact.  This means that as soon as a 

collision occurs with a limb that is supporting the weight of the avatar, nothing will 

enforce the limb to continue supporting the weight and thereby maintain a realistic 

posture.  This became apparent when an animation was tested that involved the avatar 



www.manaraa.com

 

 

 

48 

transitioning between prone and standing postures.  If posture prediction minimizes effort 

across all joints in the body like had been done previously, the legs will assume 

unrealistic positions.  More specifically, the results show that they lose contact with the 

ground entirely.  Interestingly, once the joints of weight bearing limbs are frozen, the 

upper body and remaining limbs still avoid collision in a realistic manner.   

 

 

Figure 4.6: Allowing posture prediction to minimize effort across all joints. The left posture is the 
frame from the animation file that contains self-collisions and the right posture uses the avoidance 

method on this frame. 

 

 

Figure 4.7: Freezing the lower body joints and predicting posture.  

 

Intuitively, it can be reasoned that in a real world scenario, these limbs would 

actually behave in a similarly restricted fashion.  If, like in Figures 4.6 and 4.7, the knee 



www.manaraa.com

 

 

 

49 

and foot belonging to the same leg form points of contact with the ground, that leg will 

have a fairly limited range of motion.  Once a limited range of motion is forced onto the 

lower body, a seemingly realistic avoidance strategy can once again be obtained.  This 

gives us the basis for the assumption that if optimization-based posture prediction had a 

performance measure capable of restricting range of motion for weight bearing joints, the 

recursive algorithm would be capable of handling the scenario in a realistic way. 

4.4 Implementation with Predictive Dynamics 

The motivating factor for the work of this thesis is to supply the predictive 

dynamics optimization formulation with a reference motion that is free of self-collisions.  

The objective function specific to minimizing the distance from the reference motion 

must be weighted enough within the formulation to keep the solution from moving back 

into self-collision.  A situation may also be encountered where the reference motion 

violates the equations of motion, and the optimization process brings the solution back 

into self-collision.  Of the cases tested for walking and jumping, however, this did not 

seem to be an issue.   

 

Upon further analysis of the predictive dynamics optimization problem, some 

clarity is provided.  Because the only other objective function being minimized is a 

weighted sum of joint torque limits over time, the reference motion is given significant 

consideration within the formulation.  Although it is at the discretion of the predictive 

dynamics task developer, the reference motion objective function is generally weighted 

evenly with joint torque minimization.  As the weight assigned to the reference motion 



www.manaraa.com

 

 

 

50 

decreases, the chance for a reintroduction of self-collisions into the motion will likely 

increase. 

 

 

Figure 4.8: The vertical jump predictive dynamics task, where the jump shown on the bottom 
used a reference motion processed for self-avoidance. 

        

  



www.manaraa.com

 

 

 

51 

CHAPTER 5  

CONCLUSIONS 

In this thesis, it has been shown that keyframe interpolation and optimization-

based posture prediction have the potential to work well together towards the goal of 

processing animations for self-collision avoidance.  Relying on the minimization of effort 

as a performance measure has proved to be especially successful for upper body 

avoidance.  Although there are issues with weight-bearing limbs, it stands to reason that 

this could be overcome with further research towards additional performance measures.   

 

  As a self-collision avoidance method specific to predictive dynamics reference 

motions, the current implementation should provide a reliable approach to upper body 

avoidance if the motion is relatively upright.  More specifically, this method works 

especially well for scenarios like walking, running, ascending stairs, and jumping, where 

upper body avoidance is generally the issue.  However, because there is potential for the 

predictive dynamics system to reintroduce collisions, processing the reference motion for 

self-avoidance cannot be considered a completely reliable means for the predictive 

dynamics output.  The alternative approach would be to integrate a method for self-

avoidance into the predictive dynamics system.  While this may provide more reliable 

results, it could also significantly decrease the performance of predictive dynamics.  For 

this reason, a low cost option for self-avoidance may be of significant value here. 

 

This work also has potential within the field of animation, were the use of 

keyframe interpolation is common.  This method could allow animators to automate self-



www.manaraa.com

 

 

 

52 

avoidance for general motions where minor adjustments are needed.  For example, if an 

articulated figure needed to avoid a newly added body obstacle, the animators would not 

need to go back and adjust all keyframes to account for this change.  Instead, they could 

use a single reference motion and continually process this motion for self-avoidance 

anytime a wardrobe or upper-body change has been made.  The task-based constraints 

may also be of some use in this field, as they allow the user to modify an entire animation 

around newly introduced objectives.  These constraints are fairly simple to develop from 

a programmatic standpoint and would be especially useful to animators if they could be 

created through non-programmatic means. 

 

With regards to the effectiveness of the plane constraints, the tests show that the 

posture prediction transitions smoothly between frames.  The plane constraints also 

ensure that obstacles are passed by the limbs through natural avoidance strategies.  If, 

however, a flat, plane-like obstacle were added to the body, it is entirely possible that the 

avoidance strategy would encounter issues.  Not only would this object be difficult to 

represent through a sphere approximation for collision detection, but it may be narrow 

enough to fall between frames.  Fortunately, objects this flat are rarely attached to the 

body in ways that would cause the issue to present itself, especially in practical scenarios.  

Still, it should be recognized that situations like these may exist, and that the current 

implementation is not absolute. 

 

Introducing the idea of task-based constraints served as an effective means for 

preserving objectives within the original animation.  These constraints are not only 



www.manaraa.com

 

 

 

53 

conceptually simple, but this implementation makes it fairly easy for the developer to add 

them to an animation.  Optimization-based posture prediction as a means for collision 

response is what made the creation of these constraints possible, and is therefore unique 

to this implementation.  It is not inconceivable to imagine an entire suite of generic task-

based objectives becoming available to the developer as this implementation is used with 

more animations.  However, because adding these constraints will likely make the 

optimization problem within posture prediction more difficult, a decrease in performance 

should be expected.   

 

Although this algorithmic approach to self-collision avoidance cannot be 

considered absolute, it can still have significant use in the fields of animation and virtual 

reality.  Essentially, the current implementation is not only providing an effective and 

low cost means for upper body self-avoidance, but also a framework for a more complete 

solution to be implemented through further research.   

5.1 Future Work 

The most useful improvement to this approach would be a way to realistically 

enforce ground contact within the optimization-based posture prediction.  The effort 

performance measure already offers a convenient means for this addition because it 

assigns a weighting value to each joint.  If this weighting value were to be modified 

based on contact with the ground, the optimization may encourage a more realistic 

solution.  As a result, it would then become less desirable to move the weight-bearing 

limbs when adjusting the posture for self-avoidance.  Another option would be to limit 



www.manaraa.com

 

 

 

54 

the joint ranges of motion based on contact with the ground.  This would no longer be 

through the use of a performance measure within the optimization formulation, it would 

instead be defined as a constraint.  Regardless of the implementation method chosen, 

more research would be needed to determine exactly how the joints should behave as a 

result of ground contact. 

 

An improvement that could be made to the keyframe interpolation algorithm 

would be to add a velocity constraint.  Liu and Cohen (1995) introduce a way to relax 

speed and timing, and this algorithm could benefit from a similar approach.  Because 

collisions are fixed in groups, the bounding frames of these groups are not changed from 

the original motion.  Thus, the avatar must still assume those postures at the originally 

given time frames.  If the predicted path of motion for the collision group greatly extends 

the travel distance of a limb, the resulting motion may contain unrealistic velocity.  If a 

velocity constraint were introduced that limited the allowable change in rotation of the 

joints between frames, the violating frames could then be removed and interpolated to 

relax the timing.  Additionally, this change would likely alter the path of motion in such a 

way that it appears more realistic. 



www.manaraa.com

 

 

 

55 

1 REFERENCES 

Abdel-Malek, K., Yang, J., Kim, J.H., Marler, T., Beck, S., Swan, Colby, Frey-Law, L., 

Mathai, A., Murphy, C., Rahmatallah, S., and Arora, J., 2007, “Development of the 

Virtual-Human Santos®”, Digital Human Modeling, Lecture Notes in Computer 

Science, Vol. 4561, pp. 490-499. 

Abdel-Malek, K. and Arora, J., 2013, Human Motion Simulation: Predictive Dynamics, 

Academic Press, 1st Edition. 

Abend, W., Bizzi, E., and Morasso, P., 1982, “Human arm trajectory formation”, Brain, 

105, pp. 331-348. 

Bataineh, Mohammad, 2012, Artificial Neural Network for Studying Human Performance, 

M.S. Thesis, University of Iowa, Iowa. 

Denavit, J. and Hartenberg, R.S., 1955, “A kinematic motation for lower-pair mechanisms 

based on matrices”, Journal of Applied Mechanics, Vol. 77, pp. 215-221. 

Farrell, K. and Marler, R.T., 2004, “Optimization-based kinematic models for human 

posture”, SAE Digital Human Modeling for Design and Engineering (June 14-16, 

2005), Iowa City, IA. 

Farrell, K., 2005, Kinematic Human Modeling and Simulation using Optimization-Based 

Posture Prediction, M.S. Thesis, University of Iowa, Iowa. 

Flash, T. and Hogan, N., 1985, “The coordination of arm movements: an experimentally 

confirmed mathematical model”, Journal of Neuroscience, Vol. 5, pp. 1688-1703. 

Hubbard, P.M., 1995, “Collision Detection for Interactive Graphics Applications”, IEEE 

Transactions on Visualization and Computer Graphics, Vol. 1, No. 3, pp. 218-230. 

Hubbard, P.M., 1996, “Approximating Polyhedra with Spheres for Time-Critical Collision 

Detection”, ACM Trans. on Graphics, Vol. 15, No. 3, pp. 179-210. 

Liu, Z., and Cohen, M.F., 1995, “Keyframe motion optimization by relaxing speed and 

timing”, 1995 Eurographics Workshop on Animation, Maastrich, Holland. 



www.manaraa.com

 

 

 

56 

Nebel, J.-C., 1999, “Keyframe interpolation with self-collision avoidance”, Computer 

Animation and Simulation‘99, Eurographics, Springer Computer Science, pp. 77-86. 

Nebel, J.-C., 2000, “Realistic collision avoidance of upper limbs based on neuroscience 

models”, Eurographics ‘2000, Interlaken, Switzerland, Vol. 19, No. 3. 

O’Sullivan, C., Radach, R., and Collins, S., 1999, “A model of collision perception for 

real-time animation”, Computer Animation and Simulation ’99, Eurographics, Springer 

Computer Science, pp. 67-76. 

O’Sullivan, C. and Dingliana, J., 1999, “Real-Time Collision Detection and Response 

using Sphere-Trees”, Proc. Spring Conference on Computer Graphics, Slovokia, 83-

92. 

Palmer, I.J. and Grimsdale, R.L., 1995, “Collision Detection for Animation using Sphere-

Trees”, Computer Graphics Forum, Vol. 14, No. 2, pp. 105-116. 

Quinlan, S., 1994, “Efficient Distance Computation between Non-Convex Object”, 

Proceedings International Conference on Robotics and Automation, pp. 3324-3329. 

Rose, C., Bodenheimer, B. and Cohen, M., 1998, “Verbs and Adverbs: Multidemensional 

Motion Interpolation Using Radial Basis Functions”, IEEE Computer Graphics and 

Applications, Vol. 18, pp. 32-40. 

Thalmann, N. Magnenat and Thalmann, D., 1991, “Complex models for animating 

synthetic actors”, IEEE Computer Graphics and Applications, Vol. 11, No. 5, pp. 32-

44. 

Xiang, Y., Chung, H., Kim, J., Bhatt, R., Rahmatalla, S., Yang, J., Marler, T., Arora, J., 

and Abdel-Malek, K., 2010, “Predictive dynamics: an optimization-based novel 

approach for human motion simulation”, Structural and Multidisciplanary 

Optimization, Volume 41, Issue 3, pp. 465-479. 

Yang, J., Rahmatalla, S. ,Marler, T., Abdel-Malek, K., and Harrison, C., 2007, “Validation 

of Predicted Posture for the Virtual Human Santos®”, Digital Human Modeling, 

Lecture Notes in Computer Science, Vol.4561, pp. 500-510. 

Zhang, X. and Chaffin, D.B., 2005, “Digital Human Modeling for Computer-Aided 

Ergonomics”, Handbook of Occupational Ergonomics, CRC Press. 



www.manaraa.com

 

 

 

57 

Zhao, L., Liu, Y., and Badler, N., 2005, “Applying empirical data on upper torso movement 

to real-time collision-free reach tasks”, SAE Transactions Journal of Passenger Cars 

– Mechanical Systems. 

  



www.manaraa.com

 

 

 

58 

2 APPENDIX 

RECURSIVE BISECTION AVOIDANCE CODE 
 

 

/******************************************************************************** 
 * 
 * Source       :   DnSelfAvoidanceWriter 
 * File         :   DnSelfAvoidanceWriter.cs 
 * Additional   :   Class for writing motion capture files modified for SA 
 * Project      :   Silicon 
 * Author       :   rkd, Oct. 31, 2013 
 * 
 * Copyright (C) 2012-13 Virtual Soldier Research University of Iowa 
 * All rights reserved. Duplication in any medium, electronic or otherwise is 
 * prohibited without express authorization from VSR 
 * 
 ********************************************************************************/ 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using Core; 
using Dynamics.Deprecated; 
using SCG = System.Collections.Generic; 
 
namespace Dynamics 
{ 
   /** 
    * Write modified motion capture file from spline or mocap input 
    */ 
    public class DnSelfAvoidanceWriter : DnTextWriterBase 
    { 
       #region Private Members 
 
 //!< The currently picked avatar 
       private static CsAvatar ms_kAvatar = null;     
 //!< The global position for the avatar                   
       private CsVector4f m_vGlobalPosition; 
 //!< The position for the avatar 
       private CsVector4f m_vPosition; 
 //!< The joint curves for the originial mocap 
       private static SCG.Dictionary<int, CsCurve> ms_kOriginalJoints; 
  //!< The joint curves for the modified mocap 
       private static SCG.Dictionary<int, CsCurve> ms_kModifiedJoints; 
 //!< The plane constraints being used 
       private SCG.List<_PlaneConstraint> m_kPlaneConstraints; 
 //!< The task constraints being used 
       private SCG.List<_ITaskConstraint> m_kTaskConstraints; 
 //!< The MOCAP file 
       private CsGenericParser m_kMOCAPFile; 
 //!< The # of frames in the output MOCAP file 
       private static int ms_iMOCAPFrames; 
 //!< The play speed of the output MOCAP 



www.manaraa.com

 

 

 

59 

       private float m_fMOCAPSpeed;  
 //!< The spline as a generic data file       
       private CsGenericData m_kSplineData; 
 //!< The spline joint curves 
       private DnJointSplineCollection m_kSplineJoints; 
  //!< The spline with start and end time     
       private DnJointSpline m_kSpline; 
 //!< The spline evaluator      
       private DnICurveEvaluator m_kSplineEval;  
 //!< True if mocap, false if spline for input      
       private bool m_bMocap;  
 //!< The percentage of collision group smoothing 
 private float m_fSmoothing = 0.0f;         

//!< The required group size to run posture 
 private int m_iMinGroupSize = 0;       
 //!< The evaluation points 
 private List<int> m_kEvalPoints;       
 //!< The weapon constraint, true if used 
 private bool m_bWeapon = false;       
 //!< Use elbow plane constraints 
 private bool m_bElbows = false;       
 //!< Use wrist plane constraints 
 private bool m_bWrists = false;       
 //!< Lower bounds for joint angles 
 private int m_iLowerBounds = 6;       
 //!< Upper bounds for joint angles 
 private int m_iUpperBounds = 35;        
 
       #endregion 
 
       /** 
        * Constructor for MOCAP 
        */ 
       public DnSelfAvoidanceWriter(CsAvatar kAvatar, CsGenericParser kMocapFile, 

   string sFilename, bool bElbows, bool bWrists, bool bWeapon, float  
   fSmooth, int iMinBuffer, List<int> kEvalPoints) 

       { 
   m_sFileName = sFilename; 

          // get the MOCAP file, delta time, and frame count 
   m_kMOCAPFile = kMocapFile; 

          m_fMOCAPSpeed = Convert.ToSingle(m_kMOCAPFile.GetWord()); 
          ms_iMOCAPFrames = Convert.ToInt32(m_kMOCAPFile.GetWord()); 
          // set the avatar and the task 
          ms_kAvatar = kAvatar; 
          m_vGlobalPosition = new CsVector4f(); 
          if (kAvatar != null) 
          { 
             m_vPosition = ms_kAvatar.GetPosition(true); 
          } 
 
          m_bMocap = true; 

   m_bElbows = bElbows; 
    m_bWrists = bWrists; 
    m_bWeapon = bWeapon; 
    m_fSmoothing = fSmooth / 100f; 
    m_iMinGroupSize = (iMinBuffer * 2) + 1; 
    m_kEvalPoints = kEvalPoints; 
       } 



www.manaraa.com

 

 

 

60 

 
        /** 
         * Constructor for Spline 
         */ 
        public DnSelfAvoidanceWriter(CsAvatar kAvatar, CsGenericData kSplineFile, 

    string sFilename, int iFrames, float fSpeed, bool bElbows, bool  
    bWrists, bool bWeapon, float fSmooth, int iMinBuffer, List<int>  
    kEvalPoints) 

        { 
     m_sFileName = sFilename; 
           // get the Spline file data, setup the evaluator 
     m_kSplineData = kSplineFile; 
           m_kSplineJoints = new DnJointSplineCollection(); 
           m_kSpline = m_kSplineJoints.AddData(m_kSplineData.Data, 0.0f); 
           m_kSplineEval =  
              m_kSplineJoints.GetEvaluator(eDnJointEvaluationType.Angle); 
           m_fMOCAPSpeed = fSpeed; 
     ms_iMOCAPFrames = iFrames; 
           // set the avatar 
           ms_kAvatar = kAvatar; 
           m_vGlobalPosition = new CsVector4f(); 
           if (kAvatar != null) 
           { 
              m_vPosition = ms_kAvatar.GetPosition(true); 
           } 
 
           m_bMocap = false; 
     m_bWeapon = bWeapon; 
     m_bElbows = bElbows; 
     m_bWrists = bWrists; 
     m_fSmoothing = fSmooth / 100f; 
           m_iMinGroupSize = (iMinBuffer * 2) + 1; 
     m_kEvalPoints = kEvalPoints; 
        } 
 
        /** 
         * Creates and formats a string to be written to a file 
         * @return a string to be written to a file 
         */ 
        public override string WriteText() 
        { 
           // set posture prediction settings 
           ms_kAvatar.SetProp("PostureWeightEffort", new CsDouble(1.0)); 
           ms_kAvatar.SetProp("PostureWeightJoint", new CsDouble(0.0)); 
           ms_kAvatar.SetProp("PostureStrengthPercentile", new CsDouble(5.0)); 
 
           // builds the string representing the modified MOCAP file 
           StringBuilder kStringBuilder = new StringBuilder(); 
 
           // create the animation curves that represent the MOCAP file 
           ms_kOriginalJoints = _CreateAnimCurves(); 
           // create a copy of the animation curves to be modified 
           ms_kModifiedJoints = _CreateAnimCurves(); 
           // creates all the plane constraints that will be used with posture  

    prediction 
           m_kPlaneConstraints = _CreatePlaneConstraints(); 
 
           // get the current avatar posture, to apply back after avoidance has  



www.manaraa.com

 

 

 

61 

           been run 
           float[] fJointArray =  
              CsCore.AvatarSystem.GetJointAngleArray(ms_kAvatar); 
 
           // creates all task based constraints that will be used with  
           posture prediction 
           m_kTaskConstraints = new List<_ITaskConstraint>(); 
           _CreateTaskConstraints(); 
             
           // sets up the body spheres in case they have been cleared 
           CsPosturePredict.Predict(ms_kAvatar); 
 
     // use evaluation points to free up important frames of the animation 
     _PreProcess(); 
 
           // passes all MOCAP frames into recursive bisection avoidance 
           _RecursiveAvoid(0.0f, (float)(ms_iMOCAPFrames - 1)); 
 
           // reapply initial posture 
           CsCore.AvatarSystem.SetJointAngleArray(ms_kAvatar, fJointArray); 
 
           // finished using plane constraints, so destroy 
           _DestroyPlaneConstraints(); 
 
           // finished using task constraints, so destroy 
           _DestroyTaskConstraints(); 
 
           // start building the MOCAP file with the generic header info 
           kStringBuilder.AppendLine("# Joint profiles in rad"); 
           kStringBuilder.AppendLine("# first row is delta time"); 
           kStringBuilder.AppendLine("# second row is the number of increments"); 
           kStringBuilder.AppendLine("# next row is the initial Q values, followed  
              by the Q values for time 2 and so on..."); 
           kStringBuilder.AppendLine("# G1    G2      G3      G4      G5      G6       
              Q1      Q2      Q3      Q4      Q5..."); 
           kStringBuilder.AppendLine((m_fMOCAPSpeed).ToString("F6")); 
           kStringBuilder.AppendLine(ms_iMOCAPFrames.ToString()); 
 
           float[] fGPR = new float[6]; 
           float[] fJoints = new float[49]; 
           // for each frame in the mocap animation 
           for (int i = 0; i < ms_iMOCAPFrames; i++) 
           { 
              // first three values are global position 
        float fTx =  
                 ms_kOriginalJoints[0].Data.FindClosestKey((float)i).Value; 
              fGPR[0] = fTx; 
        float fTy =  
                 ms_kOriginalJoints[1].Data.FindClosestKey((float)i).Value; 
              fGPR[1] = fTy; 
        float fTz =  
                 ms_kOriginalJoints[2].Data.FindClosestKey((float)i).Value; 
              fGPR[2] = fTz; 
 
              // next 3 are global rotation 
        float fRx =  
                 ms_kOriginalJoints[3].Data.FindClosestKey((float)i).Value; 
              fGPR[3] = fRx; 



www.manaraa.com

 

 

 

62 

              float fRy =  
                 ms_kOriginalJoints[4].Data.FindClosestKey((float)i).Value; 
              fGPR[4] = fRy; 
              float fRz =  
                 ms_kOriginalJoints[5].Data.FindClosestKey((float)i).Value; 
              fGPR[5] = fRz; 
 
              string sAvoidPosture = fGPR[0].ToString("F6") + "\t" +  
                 fGPR[1].ToString("F6") + "\t" + fGPR[2].ToString("F6") + "\t" +  
                 fGPR[3].ToString("F6") + "\t" + fGPR[4].ToString("F6") + "\t" +  
                 fGPR[5].ToString("F6") + "\t"; 
 
              for (int k = 6; k < 54; k++) 
              { 
                 sAvoidPosture = sAvoidPosture +  
                 ms_kModifiedJoints[k].Data.FindClosestKey((float)i).Value 
                 .ToString("F6") + "\t"; 
              } 
              sAvoidPosture = sAvoidPosture +  
                 ms_kModifiedJoints[54].Data.FindClosestKey((float)i).Value 
                 .ToString("F6"); 
 
              kStringBuilder.AppendLine(sAvoidPosture); 
           } 
 
           return kStringBuilder.ToString(); 
        } 
 
        #region Preprocessing phase 
 
        /** 
         * Single pass avoidance around evaluation frames 
         */ 
        private void _PreProcess() 
        { 
     List<int> kRemoveList = new List<int>(); 
     // process each evaluation frame for self-avoidance 
           foreach (int iFrame in m_kEvalPoints) 
           { 
        // apply frame from the modified mocap curves 
        _ApplyCurvePosture(iFrame, false); 
 
        // if a collision is detected 
        if (_CollisionDetected()) 
        { 
           // run posture prediciton to fix the frame 
     _RunPostureAvoidance(iFrame); 
  } 
        else 
        { 
     // remove frame from list if not in collision 
     kRemoveList.Add(iFrame); 
        } 
           } 
 
     // remove frames not in collision 
           foreach (int iRemove in kRemoveList) 
     { 



www.manaraa.com

 

 

 

63 

        m_kEvalPoints.Remove(iRemove); 
           } 
 
     int iStart; 
     int iFinish; 
           // interpolate surrounding frames if they're in collision 
     foreach (int iFrame in m_kEvalPoints) 
           { 
        iStart = iFrame; 
        iFinish = iFrame; 
        // work backwards from the collision frame 
  for (int i = iFrame - 1; i >= 0; i--) 
  { 
     _ApplyCurvePosture(i, false); 
     if (_CollisionDetected()) 
     { 
        iStart = i; 
        // remove all keys for this time step 
        for (int iJoint = m_iLowerBounds; iJoint < m_iUpperBounds;  
                       iJoint++) 
        { 
           CsCurve kCurve; 
     if (ms_kModifiedJoints.TryGetValue(iJoint, out kCurve)) 
     { 
        kCurve.Data.RemoveKey(kCurve.Data.GetKey((float)i).Time); 
     } 
        } 
     } 
     else // terminate 
     { 
        i = -1; 
     } 
        } 
 
        // work forwards from the collision frame 
  for (int j = iFrame + 1; j <= (ms_iMOCAPFrames - 1); j++) 
  { 
     _ApplyCurvePosture(j, false); 
     if (_CollisionDetected()) 
     { 
        iFinish = j; 
        // remove all keys for this time step 
        for (int iJoint = m_iLowerBounds; iJoint < m_iUpperBounds;  
                       iJoint++) 
        { 
           CsCurve kCurve; 
           if (ms_kModifiedJoints.TryGetValue(iJoint, out kCurve)) 
           { 
              kCurve.Data.RemoveKey 
                            (kCurve.Data.GetKey((float)j).Time); 
           } 
        } 
           } 
     else // terminate 
     { 
        j = ms_iMOCAPFrames; 
           } 
        } 



www.manaraa.com

 

 

 

64 

              // add back frames through recursive bisection and cardinal  
              evaluation 
        _CardinalBisection(iStart, iFinish); 
     } 
        } 
 
        #endregion 
 
        #region Recursive Bisection 
 
        /** 
         * Recursively runs Posture Prediction and interpolates the animation  
         * curves to avoid self collisions 
         * @param   fStart the starting time frame for a group of frames 
         * @param   fEnd the ending time frame for a group of frames 
         */ 
        private void _RecursiveAvoid(float fStart, float fEnd) 
        { 
     CsCore.Log.Debug("Recursion called with bounds " + fStart + " to " +  
              fEnd); 
           // flag used to determine if a collision is occuring 
           bool bColliding = false; 
           // temporary storage for the start frame in collision groups 
           int iStartFrame = 0; 
 
           // stores all collision groups between fStart and fEnd 
           SCG.List<_SelfCollision> kGroups = new SCG.List<_SelfCollision>(); 
 
           // find all collision groups 
           for (int iFrame = (int)fStart; iFrame <= (int)fEnd; iFrame++) 
           { 
              // apply frame from the modified mocap curves 
              _ApplyCurvePosture(iFrame, false); 
 
               // if a collision is detected 
               if (_CollisionDetected()) 
               { 
                  // if not currently colliding 
                  if (!bColliding) 
                  { 
                     // record the start frame of the collision 
                     iStartFrame = iFrame; 
                     bColliding = true; 
                  } 
                  // if the last frame in the entire animation is in collision 
                  // it needs to be fixed in order for the group to be completed 
                  if (iFrame == (ms_iMOCAPFrames - 1) ) 
                  { 
                     // fix the first frame and last frame and finish the group 
         if (iStartFrame == 0) 
            _RunPostureAvoidance(0); 
                     _RunPostureAvoidance(iFrame); 
                     kGroups.Add(new _SelfCollision(iStartFrame + 1, iFrame - 1)); 
                     bColliding = false; 
                  } 
               } 
 
               // if no collision is detected 



www.manaraa.com

 

 

 

65 

               else 
               { 
                  // if previously colliding 
                  if (bColliding) 
                  { 
                     // add the collision group to the list of groups 
                     kGroups.Add(new _SelfCollision(iStartFrame, iFrame - 1)); 
                     bColliding = false; 
                  } 
               } 
            } 
 
      CsCore.Log.Debug("Collision groups found: " + kGroups.Count); 
 
            // process each group of collisions 
            foreach (_SelfCollision kGroup in kGroups) 
            { 
               // get the time key that bisects the group 
               float fBisectTime = kGroup.StartFrame + ((kGroup.EndFrame –  
                  kGroup.StartFrame) / 2); 
               float fMidPoint = 0.0f; 
 
               // this is ugly, but guarentees the middle time we use has a key  
               associated with it 
               CsCurve kSampleCurve; 
               if (ms_kOriginalJoints.TryGetValue(0, out kSampleCurve)) 
               { 
                  fMidPoint = kSampleCurve.Data.FindClosestKey(fBisectTime) 
                     .Time; 
               } 
               else 
               { 
             CsCore.Log.Error("No middle frame found for self-avoidance, the  
                  impossible happened."); 
                  return; 
               } 
 
         // buffer the group based on smoothing percentage 
   _SelfCollision kBufferedGroup = _BufferGroup(kGroup); 
   // update the bounding frames for the group 
   kGroup.StartFrame = kBufferedGroup.StartFrame; 
   kGroup.EndFrame = kBufferedGroup.EndFrame; 
 
               // for each frame in the current collision group 
               for (int iGroupFrame = kGroup.StartFrame; iGroupFrame <=  
                  kGroup.EndFrame; iGroupFrame++) 
               { 
      // ensures a minimum frame buffer around posture prediction 
      if (kGroup.EndFrame - kGroup.StartFrame >= m_iMinGroupSize) 
      { 
         // if the frame is the midpoint 
         if ((float)iGroupFrame == fMidPoint) 
         { 
            // apply the midpoint frame for posture prediction 
      _ApplyCurvePosture(iGroupFrame, false); 
      // run posture prediciton to fix the frame 
      _RunPostureAvoidance(iGroupFrame); 
         } 



www.manaraa.com

 

 

 

66 

        // if the frame is not the midpoint 
        else 
        { 
     // remove all keys for this time step 
     for (int iJoint = m_iLowerBounds; iJoint < m_iUpperBounds;  
                          iJoint++) 
     { 
        CsCurve kCurve; 
        if (ms_kModifiedJoints.TryGetValue(iJoint, out kCurve)) 
        { 
                       kCurve.Data.RemoveKey 
                             (kCurve.Data.GetKey((float)iGroupFrame).Time); 
        } 
     } 
        } 
     }  
              } 
 
  // add back frames through recursive bisection and evaluation 
  //_CardinalBisection(kGroup.StartFrame, kGroup.EndFrame); 
  _QuadraticPolyFit(kGroup.StartFrame, (int)fMidPoint,  
                 kGroup.EndFrame); 
 
              // now that the midpoint is fixed, get the previous and next  
              points 
              float fPrevPoint = fMidPoint - 1.0f; 
              float fNextPoint = fMidPoint + 1.0f; 
 
              // recursively check for collisions in new evaluated keys 
              if (kGroup.StartFrame != fMidPoint) 
              { 
                 _RecursiveAvoid(kGroup.StartFrame, fPrevPoint); 
              } 
              if (kGroup.EndFrame != fMidPoint) 
              { 
                 _RecursiveAvoid(fNextPoint, kGroup.EndFrame); 
              } 
           } 
        } 
 
        #endregion 
 
        #region Private Helper Methods 
 
        /** 
         * Y = AX^2 + BX + C   
         * @param iStart the first frame of the group 
         * @param iMid the middle frame of the group 
   * @param iEnd the last frame of the group 
   */ 
   private void _QuadraticPolyFit(int iStart, int iMid, int iEnd) 
   { 
      // foreach joint curve 
      for (int iJoint = m_iLowerBounds; iJoint < m_iUpperBounds; iJoint++) 
      { 
         CsCurve kCurve; 
   if (ms_kModifiedJoints.TryGetValue(iJoint, out kCurve)) 
 



www.manaraa.com

 

 

 

67 

   { 
      float fX1 = iStart; 
      float fY1; 
      if (kCurve.Data.GetKey(fX1) == null) 
      { 
         fY1 = kCurve.Evaluate(fX1); 
   kCurve.Data.AddKey(fX1, fY1); 
      } 
      else 
      { 
         fY1 = kCurve.Data.GetKey(iStart).Value; 
      } 
      
      float fY2 = kCurve.Data.GetKey(iMid).Value; 
      float fX2 = iMid; 
 
      float fX3 = iEnd; 
      float fY3; 
      if (kCurve.Data.GetKey(fX3) == null) 
      { 
         fY3 = kCurve.Evaluate(fX3); 
   kCurve.Data.AddKey(fX3, fY3); 
      } 
      else 
      { 
         fY3 = kCurve.Data.GetKey(iEnd).Value; 
      } 
 
      // find A, B, and C 
      float fA = ((fY2 - fY1)*(fX1 - fX3) + (fY3 - fY1)*(fX2 - fX1)) / 
         ((fX1 - fX3)*((fX2 * fX2) - (fX1 * fX1)) + (fX2 - fX1)*((fX3  
                     * fX3) - (fX1 * fX1))); 
      float fB = ((fY2 - fY1) - (fA * ((fX2 * fX2) - (fX1 * fX1)))) /  
                     (fX2 - fX1); 
      float fC = fY1 - (fA * (fX1 * fX1)) - (fB * fX1); 
 
      float fY, fX; 
      for (int i = iStart + 1; i < iMid; i++) 
      { 
         fX = i; 
   fY = (fA * (fX * fX)) + (fB * fX) + fC; 
   kCurve.Data.AddKey(fX, fY); 
      } 
 
      for (int j = iMid + 1; j < iEnd; j++) 
      { 
         fX = j; 
   fY = (fA * (fX * fX)) + (fB * fX) + fC; 
   kCurve.Data.AddKey(fX, fY); 
      } 
   } 
      } 
   } 
 
   /** 
    * Uses recursive bisection and cardinal evaluation to add back frames in  
          * group 
    * @param iStart the first frame of the group 



www.manaraa.com

 

 

 

68 

          * @param iEnd the last frame of the group 
          */ 
    private void _CardinalBisection(int iStart, int iEnd) 
    { 
       // get the time key that bisects the group 
       float fBisectTime = iStart + ((iEnd - iStart) / 2); 
       float fMidPoint = 0.0f; 
 
       // this is ugly, but guarentees the middle time we use has a key  
             associated with it 
       CsCurve kSampleCurve; 
       if (ms_kOriginalJoints.TryGetValue(0, out kSampleCurve)) 
       { 
          fMidPoint = kSampleCurve.Data.FindClosestKey(fBisectTime).Time; 
       } 
       else 
       { 
          CsCore.Log.Error("No middle frame found for self-avoidance, the  
                   impossible happened."); 
    return; 
       } 
 
       // evaluate for each curve at fTime and add as a data key 
       for (int iJoint = m_iLowerBounds; iJoint < m_iUpperBounds; iJoint++) 
       { 
          CsCurve kCurve; 
    if (ms_kModifiedJoints.TryGetValue(iJoint, out kCurve)) 
    { 
       // if key doesn't already exist, so if not the PD fixed frame 
       if (kCurve.Data.GetKey(fMidPoint) == null) 
       { 
          kCurve.Data.AddKey(new CsCurveKey(fMidPoint,  
                      kCurve.Evaluate(fMidPoint))); 
       } 
    } 
       } 
 
       // now that the midpoint is fixed, get the previous and next points 
       float fPrevPoint = fMidPoint - 1.0f; 
       float fNextPoint = fMidPoint + 1.0f; 
 
       // recursively check for collisions in new evaluated keys 
       if (iStart != fMidPoint) 
       { 
          _CardinalBisection(iStart, (int)fPrevPoint); 
       } 
       if (iEnd != fMidPoint) 
       { 
          _CardinalBisection((int)fNextPoint, iEnd); 
       } 
    } 
 
    /** 
           * Updates a group to add buffered frame bounds based on preset  
           * smoothing percentage 
     * @param kGroup the collision group to buffer for smoothing 
     */ 
     private _SelfCollision _BufferGroup(_SelfCollision kGroup) 



www.manaraa.com

 

 

 

69 

     { 
        // set frame buffer as percentage of group size 
  float fFrameBuffer = (kGroup.EndFrame - kGroup.StartFrame) *  
                 m_fSmoothing; 
  fFrameBuffer = (float)Math.Round(fFrameBuffer, 0); 
 
  CsCore.Log.Debug("Frame buffer of " + fFrameBuffer + " used"); 
  // if the buffer extends beyond first frame 
  if (kGroup.StartFrame - fFrameBuffer < 0.0f) 
  { 
     kGroup.StartFrame = 0; 
  } 
  else 
  { 
     kGroup.StartFrame -= (int)fFrameBuffer; 
  } 
 
  // if the buffer extends beyond the last frame 
  if (kGroup.EndFrame + fFrameBuffer > (ms_iMOCAPFrames - 1)) 
  { 
     kGroup.EndFrame = (ms_iMOCAPFrames - 1); 
  } 
  else 
  { 
     kGroup.EndFrame += (int)fFrameBuffer; 
  } 
 
  return kGroup; 
     } 
 
          /** 
           * Updates the plane constraints and runs posture prediction, updating  
           * the modified curve 
           * @param iFrame the frame to be used as a key value for the curve 
           */ 
           private void _RunPostureAvoidance(int iFrame) 
           { 
              // update all involved plane constraints 
              foreach (_PlaneConstraint kPlane in m_kPlaneConstraints) 
              { 
                 kPlane.Update(iFrame); 
              } 
 
              // update all involved task constraints 
              foreach (_ITaskConstraint kTask in m_kTaskConstraints) 
              { 
                 kTask.Update(iFrame); 
              } 
 
              // run posture prediction 
              CsPostureResults kResults = CsPosturePredict.Predict(ms_kAvatar); 
 
        CsCore.Log.Debug("Ran Posture Prediction on frame " + iFrame); 
 
              // for the upper body, replace the curve frame with posture results  
              frame 
              for (int iJoint = m_iLowerBounds; iJoint < m_iUpperBounds; iJoint++) 
              { 



www.manaraa.com

 

 

 

70 

              CsCurve kCurve; 
              if (ms_kModifiedJoints.TryGetValue(iJoint, out kCurve)) 
              { 
                 kCurve.Data.GetKey((float)iFrame).Value =          
                    (float)kResults.m_dPosture[iJoint].Value; 
              } 
           } 
        } 
 
        /** 
         * Applies the posture at the specified frame in the mocap curves 
         * @param   iFrame the frame in the curves to apply 
         */ 
         private static void _ApplyCurvePosture(int iFrame, bool bMocap) 
         { 
            float[] fJointArray =  
               CsCore.AvatarSystem.GetJointAngleArray(ms_kAvatar); 
 
            // get each joint rotation and apply to the avatar 
            for (int iJoint = 0; iJoint < 55; iJoint++) 
            { 
               CsCurve kCurve; 
               if (bMocap) 
               { 
                  if (ms_kOriginalJoints.TryGetValue(iJoint, out kCurve)) 
                  { 
                     fJointArray[iJoint] =  
                        kCurve.Data.GetKey((float)iFrame).Value; 
                  } 
               } 
               else 
               { 
                  if (ms_kModifiedJoints.TryGetValue(iJoint, out kCurve)) 
                  { 
                     fJointArray[iJoint] =  
                        kCurve.Data.GetKey((float)iFrame).Value; 
                  } 
               } 
            } 
 
            CsCore.AvatarSystem.SetJointAngleArray(ms_kAvatar, fJointArray); 
         } 
 
        /** 
         * Checks the current avatar posture for sphere collisions 
         * @return true if collisions, false if not 
         */ 
        private bool _CollisionDetected() 
        { 
           // get the initial joint angles for the mocap frame 
           CsArray<CsDouble> kInitialAngles =        
              (CsArray<CsDouble>)ms_kAvatar.GetProp("JointAngle"); 
    
           if (CsPosturePredict.FindSelfCollisions(ms_kAvatar, kInitialAngles)) 
           { 
              return true; 
           } 
 



www.manaraa.com

 

 

 

71 

           return false; 
        } 
 
       /** 
        * Converts the selected motion capture file into a dictionary of curves  
        * that can be evaluated 
        * @return  The dictionary of curves that represents the MOCAP data 
        */ 
        private SCG.Dictionary<int, CsCurve> _CreateAnimCurves() 
        { 
           SCG.Dictionary<int, CsCurve> kJoints =  
              new SCG.Dictionary<int, CsCurve>(); 
 
           // initialize all of the joint curves 
           for (int iJoint = 0; iJoint < 55; iJoint++) 
           { 
              kJoints.Add(iJoint, new CsCurve(new CsCurveData(), new  
                 CsCurveEvaluatorLinear())); 
           } 
 
           // if we're creating the curves from a MOCAP file 
           if (m_bMocap) 
           { 
              // for each frame in the mocap animation 
              for (int iCurrentLine = 0; iCurrentLine < ms_iMOCAPFrames;  
              iCurrentLine++) 
              { 
                 // skip to the current line 
                 if (m_kMOCAPFile.PositionLine((uint)iCurrentLine + 2)) 
                 { 
                    // the first 3 are global position 
                    float fTx = Convert.ToSingle(m_kMOCAPFile.GetWord()); 
                    float fTy = Convert.ToSingle(m_kMOCAPFile.GetWord()); 
                    float fTz = Convert.ToSingle(m_kMOCAPFile.GetWord()); 
 
                    if (iCurrentLine == 0) 
                    { 
                       m_vGlobalPosition.Set(fTx, fTy, fTz); 
                    } 
                    fTx -= m_vGlobalPosition.X; 
                    fTy -= m_vGlobalPosition.Y; 
                    fTz -= m_vGlobalPosition.Z; 
 
                    CsVector4f vPos =  
                       CsCore.UnitManager.JointAnglesToPosition(fTx, fTy, fTz); 
                    vPos += m_vPosition; 
 
                    // next 3 are global rotation 
                    float fRx = Convert.ToSingle(m_kMOCAPFile.GetWord()); 
                    float fRy = Convert.ToSingle(m_kMOCAPFile.GetWord()); 
                    float fRz = Convert.ToSingle(m_kMOCAPFile.GetWord()); 
                    CsVector4f vRot =  
                       CsCore.UnitManager.JointAnglesToRotation(fRx, fRy, fRz); 
 
                    float[] fGPR = { fTx, fTy, fTz, fRx, fRy, fRz }; 
                    for (int iGPR = 0; iGPR < 6; iGPR++) 
                    { 
                       CsCurve kCurve; 



www.manaraa.com

 

 

 

72 

                       if (kJoints.TryGetValue(iGPR, out kCurve)) 
                       { 
                          kCurve.Data.AddKey(new CsCurveKey((float)iCurrentLine,  
                          fGPR[iGPR])); 
                       } 
                    } 
 
                    // step through all the joints in the mocap frame 
                    for (int iJoint = 6; iJoint < 55; iJoint++) 
                    { 
                       // get the joint rotation angle and try to add it to the  
                       respective curve 
                       float fJoint = Convert.ToSingle(m_kMOCAPFile.GetWord()); 
                       CsCurve kCurve; 
                       if (kJoints.TryGetValue(iJoint, out kCurve)) 
                       { 
                          kCurve.Data.AddKey(new CsCurveKey((float)iCurrentLine,  
                             fJoint)); 
                       } 
                    } 
                 } 
                 else 
                 { 
                    CsCore.Log.Warning("Failed to position line within the text  
                       file"); 
                 } 
              } 
           } 
           else // if we're creating the curves from a spline file 
           { 
              // for each frame in the mocap animation 
              for (int iCurrentLine = 0; iCurrentLine < ms_iMOCAPFrames;  
              iCurrentLine++) 
              { 
                 // figure out the time for the evaluate 
                 float fTime = iCurrentLine * (m_kSpline.EndTime /  
                    ms_iMOCAPFrames); 
                 float fVTtoMM = (float)CsCore.UnitManager.VTtoMM * 1000; 
      
                 // the first 3 are global position 
                 float fTx = m_kSplineEval.Evaluate(1, fTime) * fVTtoMM; 
                 float fTy = m_kSplineEval.Evaluate(2, fTime)* fVTtoMM; 
                 float fTz = -m_kSplineEval.Evaluate(0, fTime) * fVTtoMM; 
 
     CsVector4f vPos = CsCore.UnitManager.PositionToJointAngles 
                   (new CsVector4f(fTx, fTy, fTz)); 
     fTx = vPos.X; 
     fTy = vPos.Y; 
     fTz = vPos.Z; 
 
                 // the next 3 are global rotation 
                 CsVector4f vTemp = new CsVector4f(); 
     vTemp.X = -m_kSplineEval.Evaluate(4, fTime); 
     vTemp.Y = -m_kSplineEval.Evaluate(5, fTime); 
     vTemp.Z = m_kSplineEval.Evaluate(3, fTime); 
                 vTemp = VsCore.VtConvertFromDynamicsAngle(vTemp); 
     vTemp = CsCore.UnitManager.RotationToJointAngles(vTemp); 
 



www.manaraa.com

 

 

 

73 

                 float fRx = vTemp.X; 
                 float fRy = vTemp.Y; 
                 float fRz = vTemp.Z; 
 
                 float[] fGPR = { fTx, fTy, fTz, fRx, fRy, fRz }; 
                 for (int iGPR = 0; iGPR < 6; iGPR++) 
                 { 
                    CsCurve kCurve; 
                    if (kJoints.TryGetValue(iGPR, out kCurve)) 
                    { 
                       kCurve.Data.AddKey(new CsCurveKey((float)iCurrentLine,  
                       fGPR[iGPR])); 
                    } 
                 } 
 
                 // step through all the joints 
                 for (int iJoint = 6; iJoint < 55; iJoint++) 
                 { 
                    // get the joint rotation angle and try to add it to the  
                    respective curve 
                    float fJoint = m_kSplineEval.Evaluate(iJoint, fTime); 
                    CsCurve kCurve; 
                    if (kJoints.TryGetValue(iJoint, out kCurve)) 
                    { 
                       kCurve.Data.AddKey(new CsCurveKey((float)iCurrentLine,  
                       fJoint)); 
                    } 
                 } 
              } 
           } 
 
           return kJoints; 
        } 
 
       /** 
        * Creates the task based constraints 
        */ 
        private void _CreateTaskConstraints() 
        { 
           if (m_bWeapon) 
           { 
              _WeaponConstraint kWeaponConstraint = new _WeaponConstraint(); 
              m_kTaskConstraints.Add(kWeaponConstraint); 
           } 
        } 
 
       /** 
        * Destroys the task based constraints 
        */ 
        private void _DestroyTaskConstraints() 
        { 
           foreach (_ITaskConstraint kTask in m_kTaskConstraints) 
           { 
              kTask.Destroy(); 
           } 
        } 
 
       /** 



www.manaraa.com

 

 

 

74 

        * Creates the plane constraints that the avoidance methods will use 
        * @return the list of plane constraints 
        */ 
        private SCG.List<_PlaneConstraint> _CreatePlaneConstraints() 
        { 
           SCG.List<_PlaneConstraint> kList = new SCG.List<_PlaneConstraint>(); 
 
     if (m_bElbows) 
           { 
        _PlaneConstraint kElbowLeft = new _PlaneConstraint("Elbow_Left_1",  
                 eCsMEEJoints.Elbow_Left_1); 
  _PlaneConstraint kElbowRight = new _PlaneConstraint("Elbow_Right_1",  
                 eCsMEEJoints.Elbow_Right_1); 
  kList.Add(kElbowLeft); 
  kList.Add(kElbowRight); 
     } 
     if (m_bWrists) 
     { 
        _PlaneConstraint kWristLeft = new _PlaneConstraint("Elbow_Left_1",  
                 eCsMEEJoints.Wrist_Left_1); 
  _PlaneConstraint kWristRight = new _PlaneConstraint("Elbow_Right_1",  
                 eCsMEEJoints.Wrist_Right_1); 
  kList.Add(kWristLeft); 
  kList.Add(kWristRight); 
     } 
 
           return kList; 
        } 
 
       /** 
        * Destroys all plane constraints 
        */ 
        private void _DestroyPlaneConstraints() 
        { 
           foreach (_PlaneConstraint kPlane in m_kPlaneConstraints) 
           { 
              kPlane.Destroy(); 
           } 
        } 
 
        #endregion 
 
        #region Helper Classes 
 
       /** 
        * Plane constraint class primarily used for updating constraints on a  
        * frame by frame basis 
        */ 
        private class _PlaneConstraint 
        { 
           private CsMarker kMarker; 
           private CsEndEffector kEndEffector; 
           private string _sName; 
 
          /** 
           * Constructor 
           */ 
           public _PlaneConstraint(string sName, eCsMEEJoints eJoint) 



www.manaraa.com

 

 

 

75 

           { 
              _sName = sName; 
              // create the marker 
              kMarker = new CsMarker(); 
              kMarker.ParentAvatar(ms_kAvatar.ID,  
                 CsCore.AvatarSystem.GetJointInfo(eJoint), null); 
              kMarker.SetPosition(VsCore.AvGetBodyPartPos(ms_kAvatar.ID, sName,  
                 true), true); 
              kMarker.SetProp("Name", new CsString(sName + "_Marker")); 
              kMarker.SetProp("Marker Type", new CsEnum(eCsConstraintType.Plane)); 
              kMarker.SetProp("Rotation", new CsVectorVariant(new CsVector4f(0.0f,  
                 0.0f, 0.0f))); 
              CsCore.World.Add(kMarker); 
              // create the end effector 
              kEndEffector = new CsEndEffector(); 
              kEndEffector.ParentAvatar(ms_kAvatar.ID,          
                 CsCore.AvatarSystem.GetJointInfo(eJoint), null); 
              kEndEffector.SetPosition(VsCore.AvGetBodyPartPos(ms_kAvatar.ID,  
                 sName, true), true); 
              kEndEffector.SetProp("Name", new CsString(sName + "_EE")); 
              kEndEffector.SetProp("Target", new CsID(kMarker.ID)); 
              kEndEffector.SetProp("TargetType", new  
                 CsEnum(eCsTargetType.Object)); 
              CsCore.World.Add(kEndEffector); 
           } 
 
          /** 
           * Updates the constraint based on the frame 
           */ 
           public void Update(int iFrame) 
           { 
              // apply the joint rotations at the next frame (previous if last  
              frame) 
              _ApplyCurvePosture(((iFrame == (ms_iMOCAPFrames - 1)) ? (iFrame - 1)  
              : (iFrame + 1)), false); 
              CsVector4f vEnd = VsCore.AvGetBodyPartPos(ms_kAvatar.ID, _sName,  
                 true); 
 
              _ApplyCurvePosture(iFrame, false); 
              CsVector4f vStart = VsCore.AvGetBodyPartPos(ms_kAvatar.ID, _sName,  
                 true); 
 
              CsVector4f vDirection = vEnd - vStart; 
 
              kMarker.SetProp("Rotation", new CsVectorVariant(vDirection)); 
           } 
 
          /** 
           * Destroys the plane constraint 
           */ 
           public void Destroy() 
           { 
              kMarker.Node.Dispose(); 
              kMarker = null; 
 
              kEndEffector.Node.Dispose(); 
              kEndEffector = null; 
           } 



www.manaraa.com

 

 

 

76 

        } 
 
       /** 
        * Self collision class used to store start and end times of collision  
        * groups 
        */ 
        private class _SelfCollision 
        { 
           private int _iStartFrame; 
           private int _iEndFrame; 
 
           // Constructor 
           public _SelfCollision(int iStart, int iEnd) 
           { 
              _iStartFrame = iStart; 
              _iEndFrame = iEnd; 
           } 
 
           public int StartFrame 
           { 
              set { _iStartFrame = value; } 
              get { return _iStartFrame; } 
           } 
 
           public int EndFrame 
           { 
              set { _iEndFrame = value; } 
              get { return _iEndFrame; } 
           } 
        } 
 
        #region Task Constraints 
 
       /** 
        * Interface to allow for a generic call to all task constraints update  
        * and destroy 
        */ 
        interface _ITaskConstraint 
        { 
            void Update(int iFrame); 
            void Destroy(); 
        } 
 
       /** 
        * Weapon constraint for tasks 
        */ 
        private class _WeaponConstraint : _ITaskConstraint 
        { 
           private CsMarker kMarker; 
           private CsEndEffector kEndEffector; 
 
           // constructor 
           public _WeaponConstraint() 
           { 
              ms_kAvatar.SetProp("LeftHandDirection", new  
                 CsEnum(eCsHandDirectionType.Hand_Direction)); 
              _ApplyCurvePosture(ms_iMOCAPFrames - 1, true); 
 



www.manaraa.com

 

 

 

77 

              // create the marker 
              kMarker = new CsMarker(); 
              kMarker.ParentAvatar(ms_kAvatar.ID,  
                 CsCore.AvatarSystem.GetJointInfo 
                 (eCsMEEJoints.FingerMiddle_Right1_1), null); 
              kMarker.SetPosition(VsCore.AvGetBodyPartPos(ms_kAvatar.ID,  
                 "FingerMiddle_Left1_1", true), true); 
              kMarker.SetProp("Name", new CsString("Weapon_Marker")); 
              kMarker.SetProp("Marker Type", new  
                 CsEnum(eCsConstraintType.BodyPoint)); 
              CsCore.World.Add(kMarker); 
              // create the end effector 
              kEndEffector = new CsEndEffector(); 
              kEndEffector.ParentAvatar(ms_kAvatar.ID,  
                 CsCore.AvatarSystem.GetJointInfo 
                 (eCsMEEJoints.FingerMiddle_Left1_1), null); 
              kEndEffector.SetPosition(VsCore.AvGetBodyPartPos(ms_kAvatar.ID,  
                 "FingerMiddle_Left1_1", true), true); 
              kEndEffector.SetProp("Name", new CsString("Weapon_EE")); 
              kEndEffector.SetProp("Target", new CsID(kMarker.ID)); 
              kEndEffector.SetProp("TargetType", new  
                 CsEnum(eCsTargetType.Object)); 
              CsCore.World.Add(kEndEffector); 
           } 
 
          /** 
           * Updates the constraint based on the frame in the MOCAP 
           * NOTE: Not needed for this constraint. 
           */ 
           public void Update(int iFrame) { } 
 
          /** 
           * Destroys all world objects used to create the constraint 
           */ 
           public void Destroy() 
           { 
              ms_kAvatar.SetProp("LeftHandDirection", new  
                 CsEnum(eCsHandDirectionType.None)); 
 
              kMarker.Node.Dispose(); 
              kMarker = null; 
 
              kEndEffector.Node.Dispose(); 
              kEndEffector = null; 
           } 
        } 
 
        #endregion 
 
        #endregion 
     } 
  } 

 


	Self-collision avoidance through keyframe interpolation and optimization-based posture prediction
	Recommended Citation

	tmp.1423147325.pdf.SSOV1

